Heterogeneous reasoning is... reasoning about **diagrammatic** and **sentential** propositions with **mixed** diagrammatic and sentential inference steps.

In other words:

- two languages (one of them is diagrammatic),
- two sets of inference rules, and
- a bi-directional translation between the two.

\[
(\exists s \ s' \ . \ s \neq s' \land s \in A \cap B \land s' \in (A - B) \cup (B - A)) \rightarrow \\
(\exists s \ s' \ . \ s \neq s' \land s \in A \land s' \in B)
\]
Main hypothesis:

Interactive heterogeneous reasoning is feasible, and it can be done **formally** with **automated verification** of proofs (i.e.: with proof reconstruction).

We also hope to show that:

- HR can, for specific domains, produce more concise or intuitive formulae and proofs (we currently target MFOL).
- HR enables easier extensions to the diagrammatic logic (by adding new diagrammatic language elements and automatically importing or formalising new inference rules).
Heterogeneous framework

The diagrammatic language: **Spider Diagrams**

- A well-defined language on MFOL with a set of sound and complete inference rules.

We are developing a diagrammatic reasoner for spider diagrams, called **Speedith** (sources at http://gitorious.net/speedith).
Heterogeneous framework

The sentential reasoner: **Isabelle**

- Formalisation of spider diagrams in Isabelle/HOL.

  ```ml
  lemma sd_rule_split_spiders:
  
  "[ habs = (h#hs); habA ∪ habB = h ] ⇒ sd_sem (PrimarySD habs shzs) =
  (sd_sem (PrimarySD (habA#hs) shzs) ∨ sd_sem (PrimarySD (habB#hs) shzs))"
  
  ML-level translation procedures.

  Invocation of Speedith through custom tactics.

  (* This lemma should land in the unit tests. *)
  lemma testA: "(∃s1 s2. distinct[s1, s2] ∧ s1 ∈ A ∩ B ∧ s2 ∈ (A - B) ∪ (B - A))
  → (∃s1 s2. distinct[s1, s2] ∧ s1 ∈ A ∧ s2 ∈ B)"
  apply (sd_tac split_spiders sdi: 1 sp: "s2" r: "[(["A"], ["B")])")
  apply (sd_tac add_feet sdi: 3 sp: "s2" r: "[(["A"],["B")]]")
  apply (sd_tac add_feet sdi: 3 sp: "s1" r: "[(["A")],["B")])")
  apply (sd_tac add_feet sdi: 2 sp: "s2" r: "[(["A"],["B")])")
  apply (sd_tac idempotency sdi: 1)
  by auto
  ```
TODO: GUI integration

- Graphical interactive input and inference rule selection.
- Visualisation of spider diagrams with *iCircles* by Stapleton and Flower.
How should it work?

Something like this:
Heterogeneous Proofs: Spider Diagrams meet Higher-Order Provers

Matej Urbas
Matej.Urbas@cam.ac.uk

Mateja Jamnik
Mateja.Jamnik@cam.ac.uk

Resources:

- Speedith: http://gitorious.net/speedith
- iCircles: https://gitorious.org/speedith/inductive_circles