Termination of Isabelle Functions via Termination of Rewriting ITP 2011

Alexander Krauss

Christian Sternagel René Thiemann
Carsten Fuhs Jürgen Giesl
Technische Universität München
University of Innsbruck
RWTH Aachen University
August 22, 2011

What?

Why?

How?

What?
 Why?

How?

talk

How?

What? talk Why?

How? paper

Functional Programming in Isabelle/HOL

Datatypes

datatype tree =
E (*the empty tree*)
| N tree nat tree (*node having 2 subtrees*)

Functional Programming in Isabelle/HOL

Datatypes

datatype tree =
E (*the empty tree*)
| N tree nat tree (*node having 2 subtrees*)

Recursive Functions

```
    (*assuming search tree property*)
fun getmax :: "tree => nat" where
    "getmax E = 0"
| "getmax (N _ x E) = x"
| "getmax (N _ _ r) = getmax r"
```


Functional Programming in Isabelle/HOL

Datatypes

datatype tree =
E (*the empty tree*)
| N tree nat tree (*node having 2 subtrees*)

Recursive Functions

need to be total

```
    (*assuming search tree property*)
fun getmax :: "tree => nat" where
    "getmax E = 0"
| "getmax (N _ x E) = x"
| "getmax (N _ _ r) = getmax r"
```


Functional Programming in Isabelle/HOL

Datatypes

datatype tree =
E (*the empty tree*)
| N tree nat tree (*node having 2 subtrees*)

Recursive Functions

need to be total

$$
\begin{aligned}
& \text { (*assuming search tree property*) } \\
& \text { fun getmax : : "tree => nat" where } \\
& \text { "getmax E }=0 " \\
& \text { | "getmax (N _ x E) = x" } \\
& \text { | "getmax }\left(N_{2} \quad r\right)=\text { getmax } r^{\prime \prime}
\end{aligned}
$$

Consider

fun f where " $f x=f x+1$ "

Proving Totality of Isabelle/HOL Functions

Built-In Automation

- primitive recursion (syntactic)
- lexicographic orders
- size-change principle

Proving Totality of Isabelle/HOL Functions

Built-In Automation

- primitive recursion (syntactic)
- lexicographic orders
- size-change principle

Alternatives . . .

- provide appropriate measure manually
- do the full totality/termination proof inside HOL

Proving Totality of Isabelle/HOL Functions

Built-In Automation

- primitive recursion (syntactic)
- lexicographic orders
- size-change principle

Alternatives . . .

- provide appropriate measure manually
- do the full totality/termination proof inside HOL

Or

- use external (fully automatic) termination tool

Proving Totality of Isabelle/HOL Functions

Built-In Automation

- primitive recursion (syntactic)
- lexicographic orders
- size-change principle

Alternatives . . .

- provide appropriate measure manually
- do the full totality/termination proof inside HOL

- use external (fully automatic) termination tool

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
\operatorname{getmax}(\mathrm{E}) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
\operatorname{getmax}(E) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
\operatorname{getmax}(\mathrm{E}) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v})))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

$$
\operatorname{getmax}(N(E, 1, N(E, 2, E)))
$$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
\operatorname{getmax}(\mathrm{E}) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v})))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

$$
\operatorname{getmax}(N(E, 1, N(E, 2, E))) \rightarrow \operatorname{getmax}(N(E, 2, E))
$$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
\operatorname{getmax}(\mathrm{E}) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v})))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

$$
\operatorname{getmax}(N(E, 1, N(E, 2, E))) \rightarrow \operatorname{getmax}(N(E, 2, E)) \rightarrow 2
$$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

term rewrite system (TRS)

$$
\begin{aligned}
\operatorname{getmax}(E) & \rightarrow 0 \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) & \rightarrow \mathrm{y} \\
\operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))) & \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))
\end{aligned}
$$

rewrite sequence
$\operatorname{getmax}(N(E, 1, N(E, 2, E))) \rightarrow \operatorname{getmax}(N(E, 2, E)) \rightarrow 2$

First-Order Term Rewriting - "Replacing Equals by Equals"

Definition by Example

$$
\begin{aligned}
& \operatorname{getmax}(\mathrm{E}) \rightarrow 0 \\
& \operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{E})) \rightarrow \mathrm{y} \\
& \operatorname{getmax}(\mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{~N}(\mathrm{z}, \mathrm{u}, \mathrm{v}))) \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{v})) \\
& \operatorname{rewrite} \text { sequence } \\
& \operatorname{getmax}(\mathrm{N}(\mathrm{E}, 1, \mathrm{~N}(\mathrm{E}, 2, \mathrm{E}))) \rightarrow \operatorname{getmax}(\mathrm{N}(\mathrm{E}, 2, \mathrm{E})) \rightarrow 2
\end{aligned}
$$

Termination Techniques

transformations (semantic labeling, root-labeling, uncurrying, ...), interpretations (polynomial, matrix, arctic, ...), orders (Knuth-Bendix, lexicographic, multiset, RPO, ...), advanced methods (dependency pairs, dependency graph, usable rules, ...),

First-Order Term Rewriting

Termination Tools

AProVE, CiME, Jambox, Matchbox, NTI, VMTL, Torpa, TPA, $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}, \ldots$

First-Order Term Rewriting

Termination Tools

AProVE, CiME, Jambox, Matchbox, NTI, VMTL, Torpa, TPA, $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}, \ldots$

Problems

- no uniform output
- not stable (introduction of new techniques)
- huge proofs (several megabytes)
- complex and tuned for efficiency (thus sometimes buggy)

First-Order Term Rewriting

Termination Tools

AProVE, CiME, Jambox, Matchbox, NTI, VMTL, Torpa, TPA, $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}, \ldots$

Problems

- no uniform output
- not stable (introduction of new techniques)
- huge proofs (several megabytes)
- complex and tuned for efficiency (thus sometimes buggy)

Solutions

- XML format for proofs (Certification Problem Format - CPF)
- automatic certification of CPF files (using a proof assistant)

Two Worlds

Totality of Isabelle/HOL Functions

- input: defining equations E_{f} for function f of type 'a => 'b
- output: call-relation \mathcal{C}_{f} of type ('a \times 'a) set
- goal: show well-foundedness of \mathcal{C}_{f}

Two Worlds

Totality of Isabelle/HOL Function Function Package

- input: defining equation E_{f} for function f of type ' $\mathrm{a}=>$ ' b
- output: call-relation \mathcal{C}_{f} of type ('a \times 'a) set
- goal: show well-foundedness of \mathcal{C}_{f}

Two Worlds

Totality of Isabelle/HOL Function Function Package

- input: defining equation E_{f} for function f of type 'a => 'b
- output: call-relation \mathcal{C}_{f} of type ('a \times 'a) set
- goal: show well-foundedness of \mathcal{C}_{f}

Termination of TRSs

- input: TRS \mathcal{R}
- goal: show well-foundedness of rewrite relation $\rightarrow \mathcal{R}$

Two Worlds

Totality of Isabelle/HOL Function Function Package

- input: defining equation E_{f} for function f of type 'a => 'b
- output: call-relation \mathcal{C}_{f} of type ('a \times 'a) set
- goal: show well-foundedness of \mathcal{C}_{f}

Termination of TRSs

- input: TRS \mathcal{R}
- goal: show well-foundedness of rewrite relation $\rightarrow_{\mathcal{R}}$

The Big Picture

Necessary Glue

- import CPF certificate into Isabelle (using IsaFoR)
- generate $\operatorname{TRS} \mathcal{R}_{f}$ corresponding to definition of function f
- relate termination of $\rightarrow \mathcal{R}_{f}$ to well-foundedness of \mathcal{C}_{f} ?

Necessary Glue

- import CPF certificate into Isabelle (using IsaFoR)
- generate $\operatorname{TRS} \mathcal{R}_{f}$ corresponding to definition of function f
- relate termination of $\rightarrow \mathcal{R}_{f}$ to well-foundedness of \mathcal{C}_{f} ?

Encoding Function Specifications

Necessary Glue

- import CPF certificate into Isabelle (using IsaFoR)
- generate $\operatorname{TRS} \mathcal{R}_{f}$ corresponding to definition of function f
- relate termination of $\rightarrow \mathcal{R}_{f}$ to well-foundedness of \mathcal{C}_{f} ?

Encoding Function Specifications

- internal type

```
term = Var string | Fun string (term list)
```


Necessary Glue

- import CPF certificate into Isabelle (using IsaFoR)
- generate $\operatorname{TRS} \mathcal{R}_{f}$ corresponding to definition of function f
- relate termination of $\rightarrow \mathcal{R}_{f}$ to well-foundedness of \mathcal{C}_{f} ?

Encoding Function Specifications

- internal type

```
term = Var string | Fun string (term list)
```

- encoding Isabelle/HOL expressions

$$
\begin{aligned}
\operatorname{ENC}\left(f \vec{e}_{n}\right) & =\operatorname{Fun} f \quad\left[\operatorname{ENC}\left(e_{1}\right), \ldots, \operatorname{ENC}\left(e_{n}\right)\right] \\
\operatorname{ENC}(x) & =\operatorname{Var} x
\end{aligned}
$$

Necessary Glue

- import CPF certificate into Isabelle (using IsaFoR)
- generate $\operatorname{TRS} \mathcal{R}_{f}$ corresponding to definition of function f
- relate termination of $\rightarrow \mathcal{R}_{f}$ to well-foundedness of \mathcal{C}_{f} ?

Encoding Function Specifications

- internal type

```
term = Var string | Fun string (term list)
```

- encoding Isabelle/HOL expressions

$$
\begin{aligned}
\operatorname{ENC}\left(f \vec{e}_{n}\right) & =\operatorname{Fun} f \quad\left[\operatorname{ENC}\left(e_{1}\right), \ldots, \operatorname{ENC}\left(e_{n}\right)\right] \\
\operatorname{ENC}(x) & =\operatorname{Var} x
\end{aligned}
$$

- rewrite rules for equations $I_{1}=r_{1}, \ldots, I_{k}=r_{k}$

$$
\operatorname{RULES}(f)=\left\{\quad \operatorname{ENC}\left(l_{1}\right) \rightarrow \operatorname{ENC}\left(r_{1}\right)\right.
$$

$$
\left.\operatorname{ENC}\left(l_{k}\right) \rightarrow \operatorname{ENC}\left(r_{k}\right)\right\}
$$

Main Goal

- encoding emb of type 'a => term
- prove that \mathcal{C}_{f} is contained in

$$
\left\{(x, y) \mid \text { Fun } f[e m b x]\left(\rightarrow_{\mathcal{R}_{f}} \cup \triangleright\right)^{+} \text {Fun } f[e m b y]\right\}
$$

Main Goal

- encoding emb of type 'a a term
- prove that \mathcal{C}_{f} is contained in

$$
\left\{(x, y) \mid \text { Fun } f[e m b x]\left(\rightarrow_{\mathcal{R}_{f}} \cup \triangleright\right)^{+} \text {Fun } f[e m b y]\right\}
$$

Simulation Lemmas

- n-ary function f
- lemma:

$$
\text { Fun } f\left[e m b x_{1}, \ldots, e m b x_{n}\right] \rightarrow_{\mathcal{R}_{f}}^{*} e m b\left(f \vec{x}_{n}\right)
$$

Restrictions

Supported

- variables, function applications
- case-expressions (let, if)

Restrictions

Supported

- variables, function applications
- case-expressions (let, if)

Not Supported

- no data type constructors with functional arguments
- no "lambdas"
- no function variables
- no overlapping patterns
- no incomplete patterns
- no mutual recursion

Summary

What

prove termination of Isabelle/HOL functions by external termination tool

Summary

What

prove termination of Isabelle/HOL functions by external termination tool

Why

free user from tedious termination proofs; open problem since certification of termination proofs started

Summary

What

prove termination of Isabelle/HOL functions by external termination tool

Why

free user from tedious termination proofs; open problem since certification of termination proofs started

How

refer to paper and Isabelle/HOL formalization
http://cl-informatik.uibk.ac.at/software/ceta

