
seL4 Enforces Integrity

Thomas Sewell Simon Winwood Peter Gammie
Toby Murray June Andronick Gerwin Klein

www.nicta.com.au From imagination to impact



Introduction

seL4 is an operating system. It comes with some proofs.

Integrity is a textbook security property. It composes with
the existing proofs.
Proving integrity holds in seL4 is a good proof exercise.

2/22



Introduction

seL4 is an operating system. It comes with some proofs.
Integrity is a textbook security property. It composes with
the existing proofs.

Proving integrity holds in seL4 is a good proof exercise.

2/22



Introduction

seL4 is an operating system. It comes with some proofs.
Integrity is a textbook security property. It composes with
the existing proofs.
Proving integrity holds in seL4 is a good proof exercise.

2/22



Introduction (again)

seL4 is

a microkernel, not an operating system. It provides
no policy.
Integrity for seL4 looks quite different to a textbook security
policy.
Proving integrity holds in seL4 is a good exercise in
frustration.

3/22



Introduction (again)

seL4 is a microkernel, not an operating system. It provides
no policy.

Integrity for seL4 looks quite different to a textbook security
policy.
Proving integrity holds in seL4 is a good exercise in
frustration.

3/22



Introduction (again)

seL4 is a microkernel, not an operating system. It provides
no policy.
Integrity for seL4 looks quite different to a textbook security
policy.

Proving integrity holds in seL4 is a good exercise in
frustration.

3/22



Introduction (again)

seL4 is a microkernel, not an operating system. It provides
no policy.
Integrity for seL4 looks quite different to a textbook security
policy.
Proving integrity holds in seL4 is a good exercise in
frustration.

3/22



Overview

Talk overview:
1 Integrity overview
2 Previous work: Composability and Comparability
3 Integrity for seL4
4 Proof of integrity

4/22



Integrity

Integrity is the property which says that things do not change
when they should not.

5/22



Integrity

Integrity is the property which says that things do not change
when they should not.

C

A B

5/22



Integrity

Integrity is the property which says that things do not change
when they should not.

C

A B

5/22



Previous Work: L4.verified

Previous work on seL4 includes the L4.verified project, which
proved its functional correctness.

Harvey Tuch, Gerwin Klein and Gernot Heiser. OS Verification
- Now! In Proceedings, 10th HotOS 2005.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Michael Norrish, Rafal Kolanski, Thomas Sewell,
Harvey Tuch and Simon Winwood. seL4: Formal verification
of an OS Kernel. In Proceedings, 22nd SOSP 2009.

6/22



Previous Work: L4.verified

Previous work on seL4 includes the L4.verified project, which
proved its functional correctness.
This was proven as a stack of refinement proofs.

III. Abstract

II. Haskell

I. C

Hoare triples {P} f {Q} compose down these refinement proofs
modulo the abstraction/refinement relation.

7/22



Previous Work: L4.verified

Previous work on seL4 includes the L4.verified project, which
proved its functional correctness.
This was proven as a stack of refinement proofs.

III. Abstract

II. Haskell

I. C

Hoare triples {P} f {Q} compose down these refinement proofs

modulo the abstraction/refinement relation.

7/22



Previous Work: L4.verified

Previous work on seL4 includes the L4.verified project, which
proved its functional correctness.
This was proven as a stack of refinement proofs.

III. Abstract

II. Haskell

I. C

Hoare triples {P} f {Q} compose down these refinement proofs
modulo the abstraction/refinement relation.

7/22



Previous Work: L4.verified

III. Abstract

II. Haskell

I. C

User

0. ASM ?

IV. Security ?

8/22



Previous Work: Verisoft

The Verisoft project addressed all the hardware-related issues
by designing the hardware.

III. Abstract

II. Haskell

I. C

User

0. ASM ?

IV. Security ?

Verisoft also had defining property for their kernel: simulating
multiple machines. This is a policy.

9/22



Previous Work: Verisoft

The Verisoft project addressed all the hardware-related issues
by designing the hardware.

III. Abstract

II. Haskell

I. C

User

0. ASM ?

IV. Security ?

Verisoft also had defining property for their kernel: simulating
multiple machines.

This is a policy.

9/22



Previous Work: Verisoft

The Verisoft project addressed all the hardware-related issues
by designing the hardware.

III. Abstract

II. Haskell

I. C

User

0. ASM ?

IV. Security ?

Verisoft also had defining property for their kernel: simulating
multiple machines. This is a policy.

9/22



The seL4 Permission Model

The seL4 “Secure Embedded L4” microkernel is a member of
the L4 microkernel family. It is designed to be as
general-purpose as possible while providing security
guarantees.

It provides objects for threads, virtual memory and
communication.

Its permission model is based on capabilities which explicitly
grant a thread authority over some object.

There is no policy. Threads, their memory and their capability
storage may overlap arbitrarily.

Capabilities can be created, moved, sent through
communcation channels and shared between threads.

10/22



The seL4 Permission Model

The seL4 “Secure Embedded L4” microkernel is a member of
the L4 microkernel family. It is designed to be as
general-purpose as possible while providing security
guarantees.

It provides objects for threads, virtual memory and
communication.

Its permission model is based on capabilities which explicitly
grant a thread authority over some object.

There is no policy. Threads, their memory and their capability
storage may overlap arbitrarily.

Capabilities can be created, moved, sent through
communcation channels and shared between threads.

10/22



The seL4 Permission Model

The seL4 “Secure Embedded L4” microkernel is a member of
the L4 microkernel family. It is designed to be as
general-purpose as possible while providing security
guarantees.

It provides objects for threads, virtual memory and
communication.

Its permission model is based on capabilities which explicitly
grant a thread authority over some object.

There is no policy. Threads, their memory and their capability
storage may overlap arbitrarily.

Capabilities can be created, moved, sent through
communcation channels and shared between threads.

10/22



The seL4 Permission Model

The seL4 “Secure Embedded L4” microkernel is a member of
the L4 microkernel family. It is designed to be as
general-purpose as possible while providing security
guarantees.

It provides objects for threads, virtual memory and
communication.

Its permission model is based on capabilities which explicitly
grant a thread authority over some object.

There is no policy. Threads, their memory and their capability
storage may overlap arbitrarily.

Capabilities can be created, moved, sent through
communcation channels and shared between threads.

10/22



The seL4 Permission Model

The seL4 “Secure Embedded L4” microkernel is a member of
the L4 microkernel family. It is designed to be as
general-purpose as possible while providing security
guarantees.

It provides objects for threads, virtual memory and
communication.

Its permission model is based on capabilities which explicitly
grant a thread authority over some object.

There is no policy. Threads, their memory and their capability
storage may overlap arbitrarily.

Capabilities can be created, moved, sent through
communcation channels and shared between threads.

10/22



Integrity Property

C

A B

abstraction :: obj-ref⇒ α
policy :: (α× auth× α) set

11/22



Integrity Property

abstraction :: obj-ref⇒ α
policy :: (α× auth× α) set

11/22



Integrity Property

C

A B

abstraction :: obj-ref⇒ α
policy :: (α× auth× α) set

11/22



Integrity Property

C

A B

abstraction :: obj-ref⇒ α
policy :: (α× auth× α) set

11/22



Integrity Property: Requirements

The kernel comes with no explicit policy about the way
untrusting components may interact.

C

A B

We require:
1 Only communcation endpoints and memory may be

shared.
2 Capabilities may not be transferred.

12/22



Integrity Property: Requirements

The kernel comes with no explicit policy about the way
untrusting components may interact.

C

A B

We require:
1 Only communcation endpoints and memory may be

shared.
2 Capabilities may not be transferred.

12/22



Integrity Property: Authority type

We require:
1 Only communcation endpoints and memory may be

shared.
2 Capabilities may not be transferred.

We map authority to communication endpoints and memory
into the constructors Send, Receive, Read and Write of the
auth type. All other authority we map to the Control constructor.

There are also Grant and Reset constructors. See the paper.

13/22



Integrity Property: Authority type

We require:
1 Only communcation endpoints and memory may be

shared.
2 Capabilities may not be transferred.

We map authority to communication endpoints and memory
into the constructors Send, Receive, Read and Write of the
auth type. All other authority we map to the Control constructor.

There are also Grant and Reset constructors. See the paper.

13/22



Integrity Policy: Controllers

C

A B

A & B Integrity & Authority Confinement
C ??

Fine grained analyses like Take-Grant deal poorly with this
case.

We can handle some dynamic cases this way.

14/22



Integrity Policy: Controllers

C

A B

A & B Integrity & Authority Confinement
C SEP

Fine grained analyses like Take-Grant deal poorly with this
case.

We can handle some dynamic cases this way.

14/22



Integrity Policy: Controllers

C

A B

A & B Integrity & Authority Confinement
C Someone Else’s Problem

Fine grained analyses like Take-Grant deal poorly with this
case.

We can handle some dynamic cases this way.

14/22



Integrity Policy: Controllers

C

A B

A & B Integrity & Authority Confinement
C Someone Else’s Problem

Fine grained analyses like Take-Grant deal poorly with this
case.

We can handle some dynamic cases this way.

14/22



Integrity Policy: Controllers

C

A B

A & B Integrity & Authority Confinement
C Someone Else’s Problem

Fine grained analyses like Take-Grant deal poorly with this
case.

We can handle some dynamic cases this way.

14/22



Integrity Property: PAS

We define the PAS record:

record α PAS = pasPolicy :: (α× auth× α) set
pasAbs :: obj-ref⇒ α

pasSubject :: α

The PAS record is a constant parameter to all analysis.

15/22



Integrity Property: PAS

We define the PAS record:

record α PAS = pasPolicy :: (α× auth× α) set
pasAbs :: obj-ref⇒ α

pasSubject :: α

The PAS record is a constant parameter to all analysis.

15/22



Integrity Property: Definition 1

Definition
pas-wellformed pas ≡
∀ y . (pasSubject pas, Control, y ) ∈ pasPolicy pas
→ y = pasSubject pas

The current subject cannot have Control authority over any
other.

16/22



Integrity Property: Definition 2

Definition
pas-refined pas s ≡
∀ (x , auth, y ) ∈ system-auth s
→ (pasAbs pas x , auth, pasAbs pas y ) ∈ pasPolicy pas

All authority in the system must be permitted in the policy.

17/22



Integrity Property: Definition 3

Definition
integrity pas s s′ ≡ . . .

The subject is allowed to cause this transition. Describes what
is allowed by Read, Write, Send, Receive and Control.

More details are in the paper.

18/22



Integrity Property: Hypothesis

We set out to prove two Hoare triples.

Integrity:
∀pas s e. pas-wellformed pas → pas-refined pas s →

{s} call-kernel e {s′. integrity pas s s′}

Confinement:
∀pas e. {s. pas-wellformed pas ∧ pas-refined pas s}

call-kernel e {s. pas-refined pas s}

19/22



Proofs

Lemma receive-async-ipc-pas-refined:
∀ pas cap. {s. pas-refined pas s ∧
(∀ aepptr ∈ obj-refs cap. pasAbs pas t , Receive, pasAbs pas aepptr )
∈ pasPolicy pas)}

receive-async-ipc t cap
{s. pas-refined pas s}

Lemma receive-async-ipc-integrity:
∀ pas cap st . {s. integrity pas st s ∧ pas-refined pas s ∧ valid-objs s
∧ pasAbs pas t = pasSubject pas ∧ (∀ aepptr ∈ obj-refs cap. pasAbs
pas t , Receive, pasAbs pas aepptr ) ∈ pasPolicy pas)}

receive-async-ipc t cap
{s. integrity pas st s}

20/22



Proofs

Lemma receive-async-ipc-pas-refined:
∀ pas cap. {s. pas-refined pas s ∧
(∀ aepptr ∈ obj-refs cap. pasAbs pas t , Receive, pasAbs pas aepptr )
∈ pasPolicy pas)}

receive-async-ipc t cap
{s. pas-refined pas s}

Lemma receive-async-ipc-integrity:
∀ pas cap st . {s. integrity pas st s ∧ pas-refined pas s ∧ valid-objs s
∧ pasAbs pas t = pasSubject pas ∧ (∀ aepptr ∈ obj-refs cap. pasAbs
pas t , Receive, pasAbs pas aepptr ) ∈ pasPolicy pas)}

receive-async-ipc t cap
{s. integrity pas st s}

20/22



Proofs: History

We’ve done this before.

David Cock, Gerwin Klein and Thomas Sewell. Secure
Microkernels, State Monads and Scalable Refinement. In
Proceedings TPHOLs 2008.

21/22



Conclusions

Defined Integrity for seL4, and not the textbook way.
Proven that seL4 Enforces Integrity.

22/22


