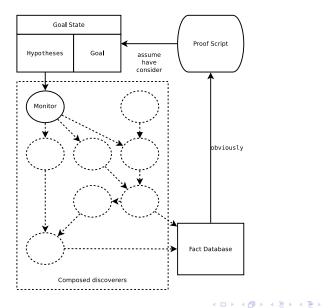
Composable Discovery Engines for Interactive Theorem Proving

Phil Scott and Jacques Fleuriot

August 22, 2011


Phil Scott and Jacques Fleuriot Composable Discovery Engines for Interactive Theorem Provin

向下 イヨト イヨト

- Framework
- Search Algebra
- Proof trees
- Integration with Theorem Proving
- Issues
- Example

(人間) (人) (人) (人) (人)

Collaborative Discovery

Phil Scott and Jacques Fleuriot Composable Discovery Engines for Interactive Theorem Provin

Э

Search Algebra¹

Given

$$\lambda x. \{x\} : \alpha \to \alpha \text{ bag}$$
$$map : (\alpha \to \beta) \to \alpha \text{ bag} \to \beta \text{ bag}$$
$$\emptyset : \text{ bag}$$
$$\cup : \text{ bag} \to \text{ bag} \to \text{ bag}$$

Define

$$\begin{array}{l} \alpha \ stream := \alpha \ bag \ list \\ unit \ x := [\{x\}, \emptyset, \emptyset \dots] \\ map_stream \ f \ [x_1, x_2, x_3] := [map \ f \ x_1, map \ f \ x_2, map \ f \ x_3, \dots] \\ 0 := [\emptyset, \emptyset, \emptyset, \dots] \\ [x_1, x_2, x_3, \dots] + [y_1, y_2, y_3, \dots] := [x_1 \cup y_1, x_2 \cup y_2, x_3 \cup y_3, \dots] \\ delay \ [x_1, x_2, x_3, \dots] := [\emptyset, x_1, x_2, x_3, \dots] \\ fix \ f \ xs := ys \quad where \quad ys := xs \cup delay \ (f \ ys) \end{array}$$

[[$a_0,$	$a_1,$	$a_2,$	$a_3,$	$a_4,$	a_5 ,	a_6 ,	<i>a</i> ₇ ,	
[$b_0,$	$b_1,$	$b_2,$	$b_3,$	$b_4,$	$b_5,$	b_6 ,	b_7 ,	
[$c_0,$	$c_1,$	$c_2,$	<i>c</i> ₃ ,	с4,	<i>c</i> ₅ ,	с _б ,	С7,	
[$d_0,$	$d_1,$	$d_2,$	$d_3,$	$d_4,$	$d_5,$	d_6 ,	d_7 ,	
[$e_0,$	$e_1,$	$e_2,$	<i>e</i> ₃ ,	$e_4,$	e_5 ,	<i>e</i> ₆ ,	<i>e</i> ₇ ,	
[$f_0,$	f_1 ,	f_2 ,	f_3 ,	f_4 ,	f_5 ,	f_6 ,	<i>f</i> ₇ ,	
[$g_0,$	$g_1,$	$g_2,$	$g_3,$	$g_4,$	$g_5,$	$g_6,$	g 7,	
[$h_0,$	$h_1,$	$h_2,$	$h_3,$	$h_4,$	$h_5,$	h_6 ,	$h_7,$	

御 と く ヨ と く ヨ と …

[[<i>a</i> ₀ ,	$a_1,$	$a_2,$	a 3,	$a_4,$	$a_5,$	<i>a</i> ₆ ,	a ₇ ,	
	[$b_0,$	$b_1,$	$b_2,$	$b_3,$	$b_4,$	b_5 ,	b_6 ,	
	[$c_0,$	$c_1,$	$c_2,$	<i>c</i> ₃ ,	с4,	$c_5,$	с6,	
	[$d_0,$	$d_1,$	$d_2,$	$d_3,$	$d_4,$	$d_5,$	d_6 ,	
	[$e_0,$	$e_1,$	$e_2,$	<i>e</i> ₃ ,	$e_4,$	e_5 ,	e_6 ,	
	[$f_0,$	f_1 ,	f_2 ,	f_3 ,	$f_4,$	f_5 ,	f_6 ,	
	[$g_0,$	$g_1,$	$g_2,$	$g_3,$	$g_4,$	$g_5,$	$g_6,$	
	[$h_0,$	$h_1,$	$h_2,$	$h_3,$	$h_4,$	$h_5,$	h_6 ,	
			÷						

白 と く ヨ と く ヨ と

[[

Want join : α stream stream $\rightarrow \alpha$ stream For now α bag list list $\rightarrow \alpha$ bag list

[<i>a</i> ₀ ,	$a_1,$	$a_2,$	<i>a</i> ₃ ,	$a_4,$	a_5 ,	a_6 ,	$a_7,$	
[$b_0,$	$b_1,$	$b_2,$	$b_3,$	$b_4,$	$b_5,$	b_6 ,	
	[$c_0,$	$c_1,$	$c_2,$	<i>c</i> ₃ ,	с4,	<i>c</i> ₅ ,	
	[$d_0,$	$d_1,$	$d_2,$	$d_3,$	$d_4,$	d_5 ,	
	[$e_0,$	$e_1,$	$e_2,$	<i>e</i> ₃ ,	$e_4,$	e_5 ,	
	[$f_0,$	f_1 ,	f_2 ,	f_3 ,	f_4 ,	f_5 ,	
	[$g_0,$	$g_1,$	$g_2,$	$g_3,$	$g_4,$	$g_5,$	
	[$h_0,$	$h_1,$	$h_2,$	$h_3,$	$h_4,$	$h_5,$	

白 と く ヨ と く ヨ と

> [[a_0 , $a_1, a_2, a_3,$ a_4 , $a_6, a_7,$ a_5 , . . . $\begin{bmatrix} & b_0, & b_1, & b_2, & b_3, & b_4, & b_5, & b_6, \\ & & \begin{bmatrix} & c_0, & c_1, & c_2, & c_3, & c_4, & c_5, \end{bmatrix}$ $d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4,$. . . e_1 , e_4 , e_0 , e_2 , *e*₃, . . . $f_0, f_1, f_2, f_3, f_4,$. . . $g_0, g_1, g_2, g_3, g_4,$. . . $h_0, \quad h_1, \quad h_2, \quad h_3, \quad h_4,$. . . ÷

▲ 注 → ▲ 注 →

> [[a_0 , $a_1, a_2, a_3,$ a_4 , $a_6, a_7,$ a_5 , . . . $\begin{bmatrix} & b_0, & b_1, & b_2, & b_3, & b_4, & b_5, & b_6, \\ & & \begin{bmatrix} & c_0, & c_1, & c_2, & c_3, & c_4, & c_5, \end{bmatrix}$ ſ $d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4,$. . . e_0 , e_1 , e_2 , e_3 , . . . $f_0, \quad f_1, \quad f_2, \quad f_3,$. . . $g_0, \quad g_1, \quad g_2, \quad g_3,$. . . $h_0, \quad h_1, \quad h_2, \quad h_3,$. . .

(3)

2

÷

> [[$a_0, a_1, a_2, a_3,$ a_4 , $a_6, a_7,$ a_5 , . . . $\begin{bmatrix} & b_0, & b_1, & b_2, & b_3, & b_4, & b_5, & b_6, \\ & & \begin{bmatrix} & c_0, & c_1, & c_2, & c_3, & c_4, & c_5, \end{bmatrix}$ $d_0, d_1, d_2, d_3, d_4,$ ſ . . . e_1 , e_0 , $e_2, e_3,$. . . $f_0, \quad f_1, \quad f_2,$. . . $g_0, \quad g_1, \quad g_2,$. . . $h_0, \quad h_1, \quad h_2,$. . .

:

★ 문 → ★ 문 →

> [[$a_0, a_1, a_2, a_3,$ a_4 , a_5 , $a_6, a_7,$. . . $\begin{bmatrix} & b_0, & b_1, & b_2, & b_3, & b_4, & b_5, & b_6, \\ & & [& c_0, & c_1, & c_2, & c_3, & c_4, & c_5, \end{bmatrix}$. . . $d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4,$ ſ . . . e_0 , $e_1, e_2, e_3,$. . . ſ $f_0, \quad f_1, \quad f_2,$. . . $g_0, g_1,$. . . $h_0, h_1,$

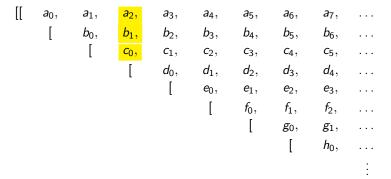
3

★ 문 ► ★ 문 ►

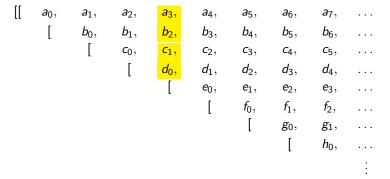
> [[a_4 , $a_0, a_1, a_2, a_3,$ a_5 , a_6 , a_7 , . . . $\begin{bmatrix} & b_0, & b_1, & b_2, & b_3, & b_4, & b_5, & b_6, \\ & & \begin{bmatrix} & c_0, & c_1, & c_2, & c_3, & c_4, & c_5, \end{bmatrix}$ $d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4,$ ſ . . . e_0 , $e_1, e_2,$ e_3 , . . . ſ $f_0, \quad f_1, \quad f_2,$. . . $g_0, g_1,$. . . h_0 , . . .

•

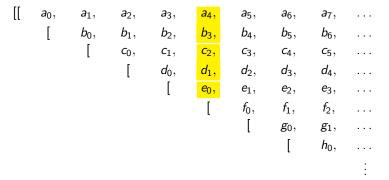
3

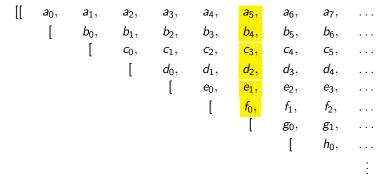

▲ 国 ▶ | ▲ 国 ▶ | |

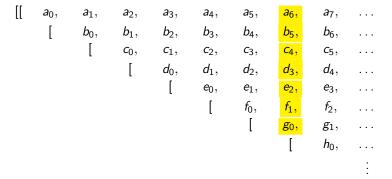
> [[*a*₀, $a_1, a_2, a_3,$ a_4 , a_5 , $a_6, a_7,$. . . [$d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4, \quad \dots$ ſ e_0 , $e_1, \qquad e_2, \qquad e_3,$. . . ſ $f_0, \quad f_1, \quad f_2, \quad \dots$ g_0, g_1, \ldots h_0, \ldots ÷

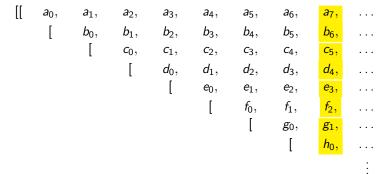

A B N A B N

> [[a_0 , $a_1, a_2, a_3,$ $a_4, a_5,$ $a_6, a_7,$. . . [$d_0, \quad d_1, \quad d_2, \quad d_3, \quad d_4, \quad \dots$ ſ e_1, e_2, e_3, \ldots e_0 , ſ $f_0, \quad f_1, \quad f_2, \quad \dots$ $g_0, \quad g_1, \quad \dots$ h_0, \ldots ÷

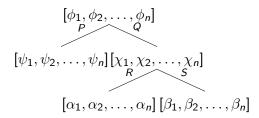

(4) (2) (4) (2) (4)


A B N A B N


A B N A B N

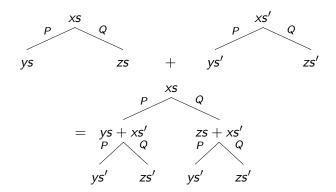

A B N A B N

A B N A B N

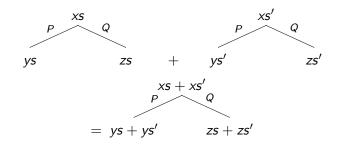


A B N A B N

A B <> A B <>


$$\phi_1 \land \phi_2 \land \dots \land \phi_n \land (P \to \psi_1 \land \psi_2 \land \dots \land \psi_n) \land (Q \to \chi_1 \land \chi_2 \land \dots \land \chi_n \land (R \to \alpha_1 \land \alpha_2 \land \dots \land \alpha_n) \land (S \to \beta_1 \land \beta_2 \land \dots \land \beta_n))$$

Replacing bags with tagged trees gives a new kind of search type: α chain := α tree list


伺 ト イヨト イヨト

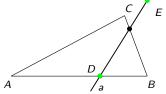
Combining Case-Splits

イロト イポト イヨト イヨト

Combining Case-Splits

イロン イヨン イヨン イヨン

monitor	thm chain
gen	term $ ightarrow$ thm chain $ ightarrow$ thm chain
consider	thm chain $ ightarrow$ thm chain
conjuncts	thm chain $ ightarrow$ thm chain
rewrite	thm list $ ightarrow$ thm chain $ ightarrow$ thm chain
mp	thm chain $ ightarrow$ thm chain $ ightarrow$ thm chain
chain1	$\mathit{thm} ightarrow \mathit{thm} \mathit{chain} ightarrow \mathit{thm} \mathit{chain}$
chain2	$\textit{thm} \rightarrow \textit{thm} \textit{chain} \rightarrow \textit{thm} \textit{chain} \rightarrow \textit{thm} \textit{chain}$
chain3	$\textit{thm} \rightarrow \textit{thm} \textit{chain} \rightarrow \textit{thm} \textit{chain} \rightarrow \textit{thm} \textit{chain}$
	ightarrow thm chain

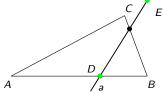

(ロ) (四) (E) (E) (E)

- Weak multi-threading
- Data-structures such as lazy-lists are not thread-safe
- Interrupts!
- Laziness subtleties

(1日) (日) (日)

Pasch's Axiom

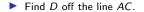
If a line *a* intersects a triangle ABC between *A* and *B*, and does not intersect any of *A*, *B* or *C*, then it intersects the triangle either between *A* and *C* or between *B* and *C*.

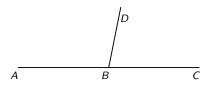


A B K A B K

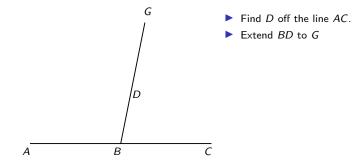
Pasch's Axiom

If a line *a* intersects a triangle ABC between *A* and *B*, and does not intersect any of *A*, *B* or *C*, then it intersects the triangle either between *A* and *C* or between *B* and *C*.

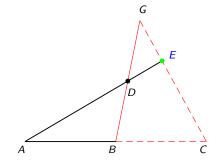



Conditions:

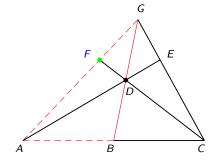
- ABC is a triangle
- ADE is a triangle
- BDE is a triangle
- CDE is a triangle


A B C

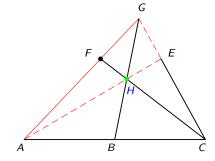
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



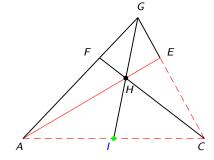
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで


- Find *D* off the line *AC*.
- Extend BD to G
- Use Pasch on AD and BCG to obtain E between C and G

・ロト ・回ト ・ヨト ・ヨト



- Find *D* off the line *AC*.
- Extend BD to G
- Use Pasch on AD and BCG to obtain E between C and G
- Use Pasch on CD and ABG to obtain F between A and G

・ロン ・回 と ・ ヨ と ・ ヨ と

- Find D off the line AC.
- Extend BD to G
- Use Pasch on AD and BCG to obtain E between C and G
- Use Pasch on CD and ABG to obtain F between A and G
- Use Pasch on CF and AEG to obtain H between A and E

- Find D off the line AC.
- Extend BD to G
- Use Pasch on AD and BCG to obtain E between C and G
- Use Pasch on CD and ABG to obtain F between A and G
- Use Pasch on CF and AEG to obtain H between A and E
- Use Pasch on BG and ACE to obtain I between A and C.

イロン イヨン イヨン イヨン

Theorem 4 Formalised Proof

```
prove collinear {A, B, C} \land A \neq B \land A \neq C \land B \neq C
         \land \neg between A C B \land \neg between B A C \Longrightarrow between A B C
assume collinear {A, B, C} \land A \neq B \land A \neq C \land B \neq C
         \land \neg between A C B \land \neg between B A C
so consider D such that \neg collinear {A, B, D}
         by construct_triangle
3 triangles discovered
obviously consider G such that between B D G by g22
8 triangles discovered
consider E such that collinear {A, D, E} \land between C E G
         by pasch_on B,C,G and A,D
16 triangles discovered
consider F such that collinear {C, D, F} \land between A F G
         by pasch_on A,B,G and C,D
28 triangles discovered
have between A D E by pasch_on A,E,G and C,F
have between A B C by pasch_on A,C,E and B,G
qed
```

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- Automated collaborative discovery.
- Discovery exploits idle time for complex combinatorial reasoning.
- Search-algebra allows advanced users to write their own discovery engines.

Future work

- Filtering/subsumption
- Proof replay without idle-time

向下 イヨト イヨト