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Introduction

@ Kenzo symbolic computation system: a Common Lisp program
devoted to Algebraic (Simplicial) Topology.

» A research tool: used to obtain relevant results in the field, neither
confirmed nor refuted by any other means.

@ The following question makes sense: Is it Kenzo correct?

@ Our goal: we want to formally prove correcteness properties of
the algorithms implemented in Kenzo

@ Since Kenzo is coded in Common Lisp, ACL2 seems a natural
candidate for this task

» Is it first-order enough to reason about algebraic topology?
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Introduction

@ Formal proofs of Kenzo properties imply the following:
1. Formal correctness proofs of the implemented algorithms
2. Formalizing the underlying theory: algebraic and simplicial topology
@ Regarding the first issue, some formal verification of functions
implemented in Kenzo has already been carried out (Calculemus
2009)
@ This talk is about the second issue: formalization in ACL2 of some
aspects of the theory of Simplicial Topology
» Ouir first step: formal proof of the Normalization Theorem of
Simplicial Topology
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Simplicial sets

@ Simplicial Topology is a subarea of Topology studying topological
properties of spaces by means of combinatorial models.

@ A simplicial set is a graded set {K, }nen (n-simplexes) together
with operators 6i(”) :Kn — Kp_1 and ni(”) : Ky — K41 (faces and
degeneracies, resp.), satisfying the following simplicial identities:

1) M tor = 9ton if i >,

i Y i Yt )
) oM = Mt i i<,
(3) ai”fn,-“ = n,-":lfai“ it i<,
(4) o o= njn_ o, it i>j4+1,
(B) arttad = Oy = i,
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Simplicial sets: some intuition

@ Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
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Simplicial sets: some intuition

@ Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
@ Geometrical: spaces resulting from triangulation of topological
spaces:
» n-simplexes in K, can be seen as n dimensional “triangles”

» The operators 8i(") gives us the “sides” of the triangle (or “faces” of
a tetrahedron).
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Simplicial sets: some intuition

@ Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
@ Geometrical: spaces resulting from triangulation of topological
spaces:
» n-simplexes in K, can be seen as n dimensional “triangles”
» The operators 8i(") gives us the “sides” of the triangle (or “faces” of
a tetrahedron).
@ A particular simplicial set can also give us some combinatorial
intuition:
» n-simplexes: non-decreasing integer lists [ag, as, . . ., an] (vertices of
the “triangle”™)
> 9™ delete the i-th element
» »™": duplicate the i-th element
» This gives some intuition about the meaning of the simplicial
identities
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Simplicial sets

@ A simplicial set is a graded set {Kp }nhen (N-simplices) together with
operators 8i(”) Ky — Kp_1 and ni(”) - Kn — Kn1 (faces and
degeneracies, resp.), satisfying the following simplicial identities:

1) artor = orton, if i >,
@) o = Mt i i<,
(3) ain-i-lnjn — 77jn_—ll ain If ' i <]7
(4) (9i”+177j” = nj”_l8ir‘_1 if  i>j+1,
(5) ottt = OV = id",
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Defining simplicial sets in ACL2

A generic simplicial set using encapsul at e

(encapsul ate

(((K* *) => )
((d *  * *) => *)
((n * ok *) => *))

(def t hm si npl i ci al -i d1
(implies (and (K m x)

(natp m (natp i) (natp j)

(<=j i) (<1 m (<1 m)

(equal (d (+ -1 m i (d mj x))
(d (+-1m j (dm(+1i) x)))))

;7 Inside this encapsul ate, we assune anal ogously
;; all the sinplicial identities.

@ (K n x) represents x € Ky,

@ (dmi x)and(n mi x) representn™(x) and 8i(m)(x), resp.
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Chain complexes

@ The set of n-chains (denoted as C,(K)) is the abelian group freely
generated by Kp.

» That is, linear combinations of elements of K, with integer
coefficients

» In ACL2, ordered lists of pairs of the form (i . x),wherei isa
non-null integer and x is a n-simplex

@ The differential is defined on x € K, as dn(X) = Zi”:o(—l)iai(”)(x)
» Extended by linearity to chains, defining d,, : C(K) — Cp_1(K)

@ |t can be proved that d, o d,,; = O (differential property)

@ In Algebra, we say that {(Cn(K), dn) }nen is a chain complex

@ Algebraic properties of the chain complex associated to a
simplicial set give us topological information
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.
> dn = So(—1)'0" and dny = S (-1) o
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.

> dn =37 o(~1)'9" and dny = g (~1) 9
» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn-
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.

> dn = So(—1)'0" and dny = S (<1) o

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn-

» Therefore, dn o dny 1 = [(—=1)"0n + dn_1][(—=1)"* 1041 + dn] =
- _8n8n+1 + (_1)n8ndn + (_1)n+ldn_18n+1 + dn_]_dn.
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.

> dn = So(—1)'0" and dny = S (<1) o

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+18n+1 + d.

» Therefore, dn o dny 1 = [(—=1)"0n + dn_1][(—=1)"* 1041 + dn] =
= —OnOni1 + (—1)"0ndn + (= 1)" " dn_10n41 + dn_1dn.

» By induction, d,_;d, = 0, so:
dn O dn+1 = —8n8n+1 + (—1)n8ndn + (—1)n+ldn_18n+1
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.

> dn = So(—1)'0" and dny = S (<1) o

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+18n+1 + dn-

> Therefore, dn o dn+1 = [(_1)n8n + dn_l] [(_1)n+18n+1 + dn] =
- _8n8n+1 + (_1)n8ndn + (_1)n+ldn_18n+1 + dn_]_dn.

» By induction, d,_;d, = 0, so:
dn O dn+]_ = _8n8n+]_ + (_1)n8ndn + (_1)n+ldn_lan+]_

> Lemma 8ndn = (_1)n8n8n+1 + dn_18n+1.
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of d, o d,, 11 = 0.

> dn = So(—1)'0" and dny = S (<1) o

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+18n+1 + d.

» Therefore, dn o dny1 = [(—1)"0n + dn_1][(—1)"1Ons1 + dn] =
= _8n8n+1 + (_1)n8ndn + (_1)n+ldn_18n+l + dn_]_dn.

» By induction, d,_;d, = 0, so:
dn O dn+]_ = _8n8n+]_ + (_1)n8ndn + (_1)n+ldn_18n+]_

> Lemma 8ndn = (_l)n8n8n+1 + dnflarH,]_.

» Applying the lemma, d, o d, 1 = 0. QED.
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:
» The superindexes can be omited (later safely recovered)
» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:
» The superindexes can be omited (later safely recovered)
» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.
» Definitions by recursion, proofs by induction
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

» We apply equational properties about linearity, compositions of
functions and the simplicial indentities.
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@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

» We apply equational properties about linearity, compositions of
functions and the simplicial indentities.

» The simplexes (and chains) on which the expressions are applied
play no role in the proof
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

» We apply equational properties about linearity, compositions of
functions and the simplicial indentities.

» The simplexes (and chains) on which the expressions are applied
play no role in the proof

@ To reflect this in our formal proofs, we introduce the framework of
simplicial polynomials:

» First-order ACL2 objects representing linear combinations of
compositions of simplicial operators
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Simplicial terms in ACL2

@ Simplical terms represent composition of simplicial operators
@ Note: the simplicial identities define a canonical form

» Any composition of simplicial operators is equal to a unique
composition of simplicial operators of the form

ﬂik"‘ﬂh&n“'ah
withiy >--->ipandj; <--- <j

@ Example:

» The composition 92n3395n3; can be put as 317,010,095 and this can
be represented by the two-element list ((3 2) (1 2 5)).

@ A simplicial term is a pair of lists of natural numbers in such a
canonical form, representing a composition of simplicial operators
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Simplicial polynomials

@ A simplicial polynomial is a symbolic expression representing
linear combinations of simplicial terms

» Example: 3 - nsn4n20103 — 2 - 731201
@ In ACL2, simplicial polynomials are represented as lists of pairs of
integers and simplicial terms.

» Only in normal form: the list is ordered w.r.t. a total order on terms
and we only allow non-null coefficients

» Example: ((3 . ((542) (13))) (-2. ((32) (1))

@ That is, simplicial polynomials are first-order canonical
representations of functions from C,(K) to Ciy(K)
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The ring of simplicial polynomials

@ Sum and product of simplicial polynomials can also be defined,
reflecting addition and composition of the functions represented
(and returning its results also in normal form).

@ For example:

> Py =3 - mamd30607 — 2110304

Py = 130406 + 2 - 110304

Py + Py = 130406 + 3 - 1an1030607

P1-P=

—2-11030406 — 4121102030405+ 3141104060705 +6 1412111020304 07 08

@ We proved in ACL2 that the set of simplicial polynomials together
with the addition and composition operations form a ring with
identity

» The ring of simplicial polynomials was obtained as an (automatic)
instantiation of a generic ring of linear combinations of elements of
a monoid

v vYyy

@ We extensively apply ring properties in our proofs
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Simplicial polynomials: a tool

@ Note: our final goal is to do formalizations based on the functions
(K...),(d ...)and(n ...) introduced by the previous
encapsul ate

» Since that is a faithful and precise formalization of the notion of
simplical set (what we call the standard framework)

@ Simplicial polynomials are only a tool for doing that, trying to
reflect our informal calculations by hand

@ Once a property is proved in the polynomial framework, we must
“lift” the property to the standard framework.
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)
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polynomials to the ring of functions on chains
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)
» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains
» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)
@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)
» We also define the polynomial d,, representing dn,
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)

» We also define the polynomial d,, representing dn,

» We prove in the simplicial polynomial ring the formulad, -dn;; =0
(as sketched by the previous hand proof)
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)

We also define the polynomial d,, representing d,

We prove in the simplicial polynomial ring the formulad,-d,;; =0
(as sketched by the previous hand proof)

We prove that d, is valid for dimension n

v

v

v
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)

» We also define the polynomial d , representing d,

» We prove in the simplicial polynomial ring the formulad, -dn;; =0
(as sketched by the previous hand proof)

» We prove that d, is valid for dimension n

» We prove that eval - sp(d,,n,c)= dn(c)
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Lifting properties

@ To "lift” properties we define an evaluation function:

» eval - sp(p,n,c) evaluates a polynomial p on a chain c € Cy(K)

» Key property: eval - sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval - sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of dy o d1(c) =0, forall ¢ € C1(K)

» We define the function d, (in the standard framework)

» We also define the polynomial d , representing d,

» We prove in the simplicial polynomial ring the formulad, -dn;; =0
(as sketched by the previous hand proof)

» We prove that d, is valid for dimension n

» We prove that eval - sp(d,,n,c)= dn(c)

» Finally, we apply eval - sp to both sides of the polynomial formula
and we obtain the desired property in the standard framework

L. Lamban etal. () ACL2 and Algebraic Topology 15/23



A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker(dn)/Im(dn1)
» Homology groups provide topological information and are the main
objects to be computed by Kenzo
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A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker(dn)/Im(dnt1)

» Homology groups provide topological information and are the main
objects to be computed by Kenzo

@ In fact, Kenzo builds a simpler chain complex with the same
homology groups:

» We say that a n-simplex x is degenerate if exists y € K,_1 such that
X = ni(”)(y) for some 0 <i < n. Otherwise, it is non-degenerate

» Let CN(K) denote the free abelian group generated by
non-degenerate simplexes

» Letf, : Ch(K) — CN(K) be the function that eliminates the
degenerate addends of a chain (normalization function)

» Letd) =f,odh

» Then {(CN(K),dN)},ey is a chain complex
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A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker (dn)/Im(dn1)
» Homology groups provide topological information and are the main
objects to be computed by Kenzo

@ In fact, Kenzo builds a simpler chain complex with the same
homology groups:

» We say that a n-simplex x is degenerate if exists y € K,_1 such that
X = ni(”)(y) for some 0 <i < n. Otherwise, it is non-degenerate

» Let CN(K) denote the free abelian group generated by
non-degenerate simplexes

» Letf, : Ch(K) — CN(K) be the function that eliminates the
degenerate addends of a chain (normalization function)

» Letd) =f,odh

» Then {(CN(K),dN)},ey is a chain complex

@ Normalization Theorem: Hy(C(K)) = Hy(CN(K)),¥n € N
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The Normalization Theorem: a stronger version

@ A strong homotopy equivalence is a 5-tuple (C,C’,f, g, h)
f
Ce_—c
g

where C = (M,d) and C’ = (M’,d’) are chain complexes, f: C — C’
and g: C’ — C are chain morphisms, h = (h;: Mj — Mj;1)icy is a family
of homomorphisms (called homotopy operator), which satisfy the
following three properties for all i € N:

(1) fiogi = idy,

(2) dijzohipg+hiodiig+giy1ofiys =idw,,

(3) fiyzohi=0
If, in addition the 5-tuple satisfies the following two properties:

(4) hiogi=0

(5) hiyaohi =0
then we say that it is a reduction.
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The Normalization Theorem: a stronger version

@ A reduction between chain complexes describes a situation where
homological information is preserved

@ Thatis, if (C,C’,f,g,h) is a reduction, then
Hn(C) 2 Hn(C’'),¥n € N

@ We have proved a reduction version of the Normalization Theorem

@ That is, we have defined appropriate f, g and h and proved that
(C(K),CN(K),f,g,h) is a reduction.
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A conjecture

@ In J. Rubio, F. Sergeraert, “Supports Acycliques and
Algorithmique”, Astérisque 192 (1990), it was experimentally
found the following formula for (C(K),CN(K),f,g,h)

» f, is the normalization function.

> gn = > (—1)ZA 0 g e, Db, - Db,
where the indexes range over 0 < a; < by < ... <ap <bp <n,
with 0 < p < (n+1)/2.

» hy, = > (_1)ap+1+2.p:1 ai+hi Nay,1Map - - - May Oby - - - Ob,
where the indexes range over

O<aj<bi<...<ap<apt1 <b,<nwitho<p<(n+1)/2

and claimed there, without proof, that they define a strong
homotopy equivalence
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A conjecture

@ In J. Rubio, F. Sergeraert, “Supports Acycliques and
Algorithmique”, Astérisque 192 (1990), it was experimentally
found the following formula for (C(K),CN(K),f,g,h)

» f, is the normalization function.

> gnh = E (—1)2:0:16"“)' Tag - - - nalabl - 8bp
where the indexes range over 0 < a; < by < ... <ap <bp <n,
with0 <p < (n+1)/2.

> hy = 3 (—1)2at X atd g na e, Oh, - - O,
where the indexes range over
O<aj<bi<...<ap<apt1 <b,<nwitho<p<(n+1)/2
and claimed there, without proof, that they define a strong
homotopy equivalence
@ Our contribution:

» We did a hand proof of the conjecture
» We formalized it in ACL2, thus proving the reduction version of the
Normalization Theorem
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The main theorems proved

@ THEOREM: F- chai n- nor phi sm
(meNT Ac € Cm(K)) — dh(fm(C)) = fm_1(dm(C))
@ THEOREM: G chai n- nor phi sm
(me N AceCu(K)) = gn-1(dm(c)) = dm(gm(c))
@ THEOREM:F-G H property-1
(m eNACEe Cm(K)) — fm(gm(c)) =C
@ THEOREM: F-G H property-2
(m €N Ac e Cn(K)) = dnia(hm(C)) + hm_1(dm(c)) = ¢ — gm(fm(c))

@ THEOREM: F- G H-property-3
(meNAc €Cn(K)) — fnpa(hm(c)) =0

@ THEOREM: F- G H property-4
(meNAceChK)) = hm(gm(c)) =0

@ THEOREM: F-G H property-5
(meNAc eCn(K)) — hnii(hm(c)) =0
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Some comments on the proof of the Normalization
Theorem

@ The core of the proof is carried out in the polynomial framework,
guided by our hand proof

@ The expressions involved are highly combinatorial. For example,
this is the polynomial for hy:
no — 11 + Mnod1 — mnodz + mnods — N1noda + M2 + N2mod2 —
121003 + 121004 — M2m1.02 + 1M21103 — M2m104 — N3 + 31003 —
n31M004 — 13N103 + M31M104 + 131203 — 311204 — N3N2M00103 +
13112100104 + 14 + 141004 — 141104 + Nan204 — Nan2no0104 —
Nan304 + 1413100104 — Man3N00204 + Nan3110204

@ But the style of the proofs is similar to the simple example
presented previously.

@ Properties are lifted from the polynomial framework to the
standard framework.
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Some comments on the proof of the Normalization
Theorem

@ Note: the polynomial framework is not expressive enough to state
the theorem. For example:

» The normalization function cannot be expressed as a polynomial
» Some transformations have to be applied to obtain a reduction from
a strong homotopy equivalence, not expressed as polynomials.

@ Therefore, some additional proofs in the standard framework are
needed.
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Conclusions and further work

@ We have presented an approach to proving Algebraic Topology
theorems in a first-order setting

» We use the ACL2 theorem prover, because our long term goal is to
verify properties of a Common Lisp system

@ Proof effort: 99 definitions, 565 lemmas, 158 hints

» Part of the formalization is automatically generated as instances of
other generic theories

@ Our next step: Eilenberg-Zilber theorem, an important theorem in
algebraic topology, about the homology of product spaces.
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» Part of the formalization is automatically generated as instances of
other generic theories

@ Our next step: Eilenberg-Zilber theorem, an important theorem in
algebraic topology, about the homology of product spaces.

@ Thank you!
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