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Introduction

Kenzo symbolic computation system: a Common Lisp program
devoted to Algebraic (Simplicial) Topology.

◮ A research tool: used to obtain relevant results in the field, neither
confirmed nor refuted by any other means.

The following question makes sense: Is it Kenzo correct?

Our goal: we want to formally prove correcteness properties of
the algorithms implemented in Kenzo

Since Kenzo is coded in Common Lisp, ACL2 seems a natural
candidate for this task

◮ Is it first-order enough to reason about algebraic topology?
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Introduction

Formal proofs of Kenzo properties imply the following:
1. Formal correctness proofs of the implemented algorithms
2. Formalizing the underlying theory: algebraic and simplicial topology

Regarding the first issue, some formal verification of functions
implemented in Kenzo has already been carried out (Calculemus
2009)
This talk is about the second issue: formalization in ACL2 of some
aspects of the theory of Simplicial Topology

◮ Our first step: formal proof of the Normalization Theorem of
Simplicial Topology
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Simplicial sets

Simplicial Topology is a subarea of Topology studying topological
properties of spaces by means of combinatorial models.

A simplicial set is a graded set {Kn}n∈N (n-simplexes) together
with operators ∂

(n)
i : Kn → Kn−1 and η

(n)
i : Kn → Kn+1 (faces and

degeneracies, resp.), satisfying the following simplicial identities:

(1) ∂n−1
i ∂n

j = ∂n−1
j ∂n

i+1 if i ≥ j ,
(2) ηn+1

i ηn
j = ηn+1

j+1 ηn
i if i ≤ j ,

(3) ∂n+1
i ηn

j = ηn−1
j−1 ∂n

i if i < j ,
(4) ∂n+1

i ηn
j = ηn−1

j ∂n
i−1 if i > j + 1,

(5) ∂n+1
i ηn

i = ∂n+1
i+1 ηn

i = idn,
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Simplicial sets: some intuition

Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
Geometrical: spaces resulting from triangulation of topological
spaces:

◮ n-simplexes in Kn can be seen as n dimensional “triangles”
◮ The operators ∂

(n)
i gives us the “sides” of the triangle (or “faces” of

a tetrahedron).

A particular simplicial set can also give us some combinatorial
intuition:

◮ n-simplexes: non-decreasing integer lists [a0, a1, . . . , an] (vertices of
the “triangle”)

◮ ∂
(n)
i : delete the i-th element

◮ η
(n)
i : duplicate the i-th element

◮ This gives some intuition about the meaning of the simplicial
identities
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Defining simplicial sets in ACL2

A generic simplicial set using encapsulate
(encapsulate
(((K * *) => *)
((d * * *) => *)
((n * * *) => *))
....

(defthm simplicial-id1
(implies (and (K m x)

(natp m) (natp i) (natp j)
(<= j i) (< i m) (< 1 m))

(equal (d (+ -1 m) i (d m j x))
(d (+ -1 m) j (d m (+ 1 i) x)))))

;;; Inside this encapsulate, we assume analogously
;;; all the simplicial identities.

.....)

(K n x) represents x ∈ Kn,

(d m i x) and (n m i x) represent η
(m)
i (x) and ∂

(m)
i (x), resp.
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Chain complexes

The set of n-chains (denoted as Cn(K )) is the abelian group freely
generated by Kn.

◮ That is, linear combinations of elements of Kn with integer
coefficients

◮ In ACL2, ordered lists of pairs of the form (i . x), where i is a
non-null integer and x is a n-simplex

The differential is defined on x ∈ Kn as dn(x) =
∑n

i=0(−1)i∂
(n)
i (x)

◮ Extended by linearity to chains, defining dn : Cn(K ) → Cn−1(K )

It can be proved that dn ◦ dn+1 = 0 (differential property)

In Algebra, we say that {(Cn(K ), dn)}n∈N is a chain complex

Algebraic properties of the chain complex associated to a
simplicial set give us topological information
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Proving simplicial topology theorems in ACL2

An example: an (informal) proof of dn ◦ dn+1 = 0.

◮ dn =
∑n

i=0(−1)i∂
(n)
i and dn+1 =

∑n+1
i=0 (−1)i∂n+1

i
◮ If we omit the superindexes, we can recursively define:

dn+1 = (−1)n+1∂n+1 + dn.
◮ Therefore, dn ◦ dn+1 = [(−1)n∂n + dn−1][(−1)n+1∂n+1 + dn] =

= −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1 + dn−1dn.
◮ By induction, dn−1dn = 0, so:

dn ◦ dn+1 = −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1
◮ Lemma: ∂ndn = (−1)n∂n∂n+1 + dn−1∂n+1.
◮ Applying the lemma, dn ◦ dn+1 = 0. QED.
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Proving simplicial topology theorems in ACL2

Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

◮ The superindexes can be omited (later safely recovered)
◮ We calculate with symbolic expressions involving linear

combinations of composition of face and degeneracy maps.
◮ Definitions by recursion, proofs by induction
◮ We apply equational properties about linearity, compositions of

functions and the simplicial indentities.
◮ The simplexes (and chains) on which the expressions are applied

play no role in the proof

To reflect this in our formal proofs, we introduce the framework of
simplicial polynomials:

◮ First-order ACL2 objects representing linear combinations of
compositions of simplicial operators
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Simplicial terms in ACL2

Simplical terms represent composition of simplicial operators

Note: the simplicial identities define a canonical form
◮ Any composition of simplicial operators is equal to a unique

composition of simplicial operators of the form

ηik · · · ηi1∂j1 · · · ∂jl

with ik > · · · > i1 and j1 < · · · < jl

Example:
◮ The composition ∂5

5η4
3∂5

1∂6
2η5

4 can be put as η3η2∂1∂2∂5 and this can
be represented by the two-element list ((3 2) (1 2 5)).

A simplicial term is a pair of lists of natural numbers in such a
canonical form, representing a composition of simplicial operators
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Simplicial polynomials

A simplicial polynomial is a symbolic expression representing
linear combinations of simplicial terms

◮ Example: 3 · η5η4η2∂1∂3 − 2 · η3η2∂1

In ACL2, simplicial polynomials are represented as lists of pairs of
integers and simplicial terms.

◮ Only in normal form: the list is ordered w.r.t. a total order on terms
and we only allow non-null coefficients

◮ Example: ((3 . ((5 4 2) (1 3))) (-2 . ((3 2) (1))))

That is, simplicial polynomials are first-order canonical
representations of functions from Cn(K ) to Cm(K )
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The ring of simplicial polynomials

Sum and product of simplicial polynomials can also be defined,
reflecting addition and composition of the functions represented
(and returning its results also in normal form).
For example:

◮ p1 = 3 · η4η1∂3∂6∂7 − 2 · η1∂3∂4
◮ p2 = η3∂4∂6 + 2 · η1∂3∂4
◮ p1 + p2 = η3∂4∂6 + 3 · η4η1∂3∂6∂7
◮ p1 · p2 =

−2·η1∂3∂4∂6−4·η2η1∂2∂3∂4∂5+3·η4η1∂4∂6∂7∂8+6·η4η2η1∂2∂3∂4∂7∂8

We proved in ACL2 that the set of simplicial polynomials together
with the addition and composition operations form a ring with
identity

◮ The ring of simplicial polynomials was obtained as an (automatic)
instantiation of a generic ring of linear combinations of elements of
a monoid

We extensively apply ring properties in our proofs
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Simplicial polynomials: a tool

Note: our final goal is to do formalizations based on the functions
(K ...), (d ...) and (n ...) introduced by the previous
encapsulate

◮ Since that is a faithful and precise formalization of the notion of
simplical set (what we call the standard framework)

Simplicial polynomials are only a tool for doing that, trying to
reflect our informal calculations by hand

Once a property is proved in the polynomial framework, we must
“lift” the property to the standard framework.
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Lifting properties

To “lift” properties we define an evaluation function:
◮ eval-sp(p,n,c) evaluates a polynomial p on a chain c ∈ Cn(K )
◮ Key property: eval-sp is an homomorphism from the ring of

polynomials to the ring of functions on chains
◮ Note: eval-sp reintroduces the dimension (and this only makes

sense when p is valid for dimension n)

Example: proof of dn ◦ dn+1(c) = 0, for all c ∈ Cn+1(K )

◮ We define the function dn (in the standard framework)
◮ We also define the polynomial dn, representing dn
◮ We prove in the simplicial polynomial ring the formula dn · dn+1 = 0

(as sketched by the previous hand proof)
◮ We prove that dn is valid for dimension n
◮ We prove that eval-sp(dn,n,c)= dn(c)
◮ Finally, we apply eval-sp to both sides of the polynomial formula

and we obtain the desired property in the standard framework
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◮ We also define the polynomial dn, representing dn
◮ We prove in the simplicial polynomial ring the formula dn · dn+1 = 0

(as sketched by the previous hand proof)
◮ We prove that dn is valid for dimension n
◮ We prove that eval-sp(dn,n,c)= dn(c)
◮ Finally, we apply eval-sp to both sides of the polynomial formula

and we obtain the desired property in the standard framework

L. Lambán et al. () ACL2 and Algebraic Topology 15 / 23



Lifting properties

To “lift” properties we define an evaluation function:
◮ eval-sp(p,n,c) evaluates a polynomial p on a chain c ∈ Cn(K )
◮ Key property: eval-sp is an homomorphism from the ring of

polynomials to the ring of functions on chains
◮ Note: eval-sp reintroduces the dimension (and this only makes

sense when p is valid for dimension n)

Example: proof of dn ◦ dn+1(c) = 0, for all c ∈ Cn+1(K )

◮ We define the function dn (in the standard framework)
◮ We also define the polynomial dn, representing dn
◮ We prove in the simplicial polynomial ring the formula dn · dn+1 = 0

(as sketched by the previous hand proof)
◮ We prove that dn is valid for dimension n
◮ We prove that eval-sp(dn,n,c)= dn(c)
◮ Finally, we apply eval-sp to both sides of the polynomial formula

and we obtain the desired property in the standard framework

L. Lambán et al. () ACL2 and Algebraic Topology 15 / 23



Lifting properties

To “lift” properties we define an evaluation function:
◮ eval-sp(p,n,c) evaluates a polynomial p on a chain c ∈ Cn(K )
◮ Key property: eval-sp is an homomorphism from the ring of

polynomials to the ring of functions on chains
◮ Note: eval-sp reintroduces the dimension (and this only makes

sense when p is valid for dimension n)

Example: proof of dn ◦ dn+1(c) = 0, for all c ∈ Cn+1(K )

◮ We define the function dn (in the standard framework)
◮ We also define the polynomial dn, representing dn
◮ We prove in the simplicial polynomial ring the formula dn · dn+1 = 0

(as sketched by the previous hand proof)
◮ We prove that dn is valid for dimension n
◮ We prove that eval-sp(dn,n,c)= dn(c)
◮ Finally, we apply eval-sp to both sides of the polynomial formula

and we obtain the desired property in the standard framework

L. Lambán et al. () ACL2 and Algebraic Topology 15 / 23



A non-trivial example: the Normalization Theorem

The homology groups of a simplical set K are the quotient groups
Hn(C(K )) = Ker(dn)/Im(dn+1)

◮ Homology groups provide topological information and are the main
objects to be computed by Kenzo

In fact, Kenzo builds a simpler chain complex with the same
homology groups:

◮ We say that a n-simplex x is degenerate if exists y ∈ Kn−1 such that
x = η

(n)
i (y) for some 0 ≤ i ≤ n. Otherwise, it is non-degenerate

◮ Let CN
n (K ) denote the free abelian group generated by

non-degenerate simplexes
◮ Let fn : Cn(K ) → CN

n (K ) be the function that eliminates the
degenerate addends of a chain (normalization function)

◮ Let dN
n = fn ◦ dn

◮ Then {(CN
n (K ), dN

n )}n∈N is a chain complex

Normalization Theorem: Hn(C(K )) ∼= Hn(CN(K )),∀n ∈ N
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The Normalization Theorem: a stronger version

A strong homotopy equivalence is a 5-tuple (C, C′, f , g, h)

C
f

++
h

88 C′

g

jj

where C = (M, d) and C′ = (M ′, d ′) are chain complexes, f : C → C′

and g : C′ → C are chain morphisms, h = (hi : Mi → Mi+1)i∈N is a family
of homomorphisms (called homotopy operator), which satisfy the
following three properties for all i ∈ N:
(1) fi ◦ gi = idM′

i

(2) di+2 ◦ hi+1 + hi ◦ di+1 + gi+1 ◦ fi+1 = idMi+1

(3) fi+1 ◦ hi = 0
If, in addition the 5-tuple satisfies the following two properties:
(4) hi ◦ gi = 0
(5) hi+1 ◦ hi = 0

then we say that it is a reduction.
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The Normalization Theorem: a stronger version

A reduction between chain complexes describes a situation where
homological information is preserved

That is, if (C, C′, f , g, h) is a reduction, then
Hn(C) ∼= Hn(C′),∀n ∈ N

We have proved a reduction version of the Normalization Theorem

That is, we have defined appropriate f , g and h and proved that
(C(K ), CN(K ), f , g, h) is a reduction.
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A conjecture

In J. Rubio, F. Sergeraert, “Supports Acycliques and
Algorithmique”, Astérisque 192 (1990), it was experimentally
found the following formula for (C(K ), CN(K ), f , g, h)

◮ fn is the normalization function.
◮ gn =

∑
(−1)

Pp
i=1 ai +bi ηap . . . ηa1∂b1 . . . ∂bp

where the indexes range over 0 ≤ a1 < b1 < . . . < ap < bp ≤ n,
with 0 ≤ p ≤ (n + 1)/2.

◮ hn =
∑

(−1)ap+1+
Pp

i=1 ai+bi ηap+1 ηap . . . ηa1∂b1 . . . ∂bp

where the indexes range over
0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ n, with 0 ≤ p ≤ (n + 1)/2.

and claimed there, without proof, that they define a strong
homotopy equivalence
Our contribution:

◮ We did a hand proof of the conjecture
◮ We formalized it in ACL2, thus proving the reduction version of the

Normalization Theorem
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The main theorems proved

THEOREM: F-chain-morphism
(m ∈ N

+
∧ c ∈ Cm(K )) → dN

m(fm(c)) = fm−1(dm(c))

THEOREM: G-chain-morphism
(m ∈ N

+
∧ c ∈ CN

m(K )) → gm−1(dN
m (c)) = dm(gm(c))

THEOREM: F-G-H-property-1
(m ∈ N ∧ c ∈ CN

m(K )) → fm(gm(c)) = c

THEOREM: F-G-H-property-2
(m ∈ N

+
∧ c ∈ Cm(K )) → dm+1(hm(c)) + hm−1(dm(c)) = c − gm(fm(c))

THEOREM: F-G-H-property-3
(m ∈ N ∧ c ∈ Cm(K )) → fm+1(hm(c)) = 0

THEOREM: F-G-H-property-4
(m ∈ N ∧ c ∈ CN

m(K )) → hm(gm(c)) = 0

THEOREM: F-G-H-property-5
(m ∈ N ∧ c ∈ Cm(K )) → hm+1(hm(c)) = 0
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Some comments on the proof of the Normalization
Theorem

The core of the proof is carried out in the polynomial framework,
guided by our hand proof

The expressions involved are highly combinatorial. For example,
this is the polynomial for h4:
η0 − η1 + η1η0∂1 − η1η0∂2 + η1η0∂3 − η1η0∂4 + η2 + η2η0∂2 −
η2η0∂3 + η2η0∂4 − η2η1∂2 + η2η1∂3 − η2η1∂4 − η3 + η3η0∂3 −
η3η0∂4 − η3η1∂3 + η3η1∂4 + η3η2∂3 − η3η2∂4 − η3η2η0∂1∂3 +
η3η2η0∂1∂4 + η4 + η4η0∂4 − η4η1∂4 + η4η2∂4 − η4η2η0∂1∂4 −
η4η3∂4 + η4η3η0∂1∂4 − η4η3η0∂2∂4 + η4η3η1∂2∂4

But the style of the proofs is similar to the simple example
presented previously.

Properties are lifted from the polynomial framework to the
standard framework.
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Some comments on the proof of the Normalization
Theorem

Note: the polynomial framework is not expressive enough to state
the theorem. For example:

◮ The normalization function cannot be expressed as a polynomial
◮ Some transformations have to be applied to obtain a reduction from

a strong homotopy equivalence, not expressed as polynomials.

Therefore, some additional proofs in the standard framework are
needed.
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Conclusions and further work

We have presented an approach to proving Algebraic Topology
theorems in a first-order setting

◮ We use the ACL2 theorem prover, because our long term goal is to
verify properties of a Common Lisp system

Proof effort: 99 definitions, 565 lemmas, 158 hints
◮ Part of the formalization is automatically generated as instances of

other generic theories

Our next step: Eilenberg-Zilber theorem, an important theorem in
algebraic topology, about the homology of product spaces.

Thank you!
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