
Lem: A Lightweight Tool for Heavyweight
Semantics

Scott Owens1 Peter Böhm1

Francesco Zappa Nardelli2 Peter Sewell1

1University of Cambridge 2INRIA

http://www.cl.cam.ac.uk/~so294/lem/

23 August, 2011
ITP

– p. 1

http://www.cl.cam.ac.uk/~so294/lem/

Heavyweight Semantics

At Cambridge (with INRIA, NICTA, IBM, and others):
TCP; an optical network switch; Java module system;
OCamllight; C/C++ concurrency; x86, POWER and ARM
multicore relaxed memory; CompCertTSO verified
compiler; C1x semantics

realistic systems

large definitions (thousands of lines)

testing tools/automation

sometimes proof (later)

experience with Coq, HOL4, Isabelle/HOL, Ott

Using Lem

– p. 2

Lem: a Lightweight Tool

An engineering challenge

support human-readable source files
simple logic, rich “programming language” features

take the source text seriously

support execution

be quick and predictable
catch target errors during translation

e.g., 25 kinds of expressions, 11 patterns

– p. 3

Example in Lem

let coherent_memory_use actions lk rf mo hb =

(* CoRR *)

(forall ((x,a) IN rf) ((y,b) IN rf).

((a,b) IN hb && same_location a b &&

is_at_atomic_location lk b)

-->

((x = y) || (x,y) IN mo)) &&

Misleading size : ≈ 1%

From C++ M. M. (Batty, Owens, Sarkar, Sewell, Weber in POPL11)

– p. 4

Example in Latex

let coherent_memory_use actions lk rf mo hb =

(* CoRR *)
(∀(x , a)∈rf (y , b)∈rf .

((a, b) ∈ hb ∧ same_location a b ∧

is_at_atomic_location lk b)

−→

((x = y) ∨ (x , y) ∈ mo)) ∧

– p. 5

Example in OCaml

let coherent_memory_use actions lk rf mo hb =

(* CoRR *)

(Pset.for_all (fun (x,a) -> Pset.for_all (fun (y,b) ->

(not

(Pset.mem (a,b) hb && (same_location a b &&

is_at_atomic_location lk b)) ||

((x = y) || Pset.mem (x,y) mo))) rf) rf) &&

– p. 6

Example in HOL-4

coherent_memory_use actions lk rf mo hb =

(* CoRR *)

(! ((x,a) :: rf) ((y,b) :: rf).

((a,b) IN hb /\ same_location a b /\

is_at_atomic_location lk b)

==>

((x = y) \/ (x,y) IN mo)) /\

– p. 7

Example in Isabelle/HOL

definition coherent_memory_use :: "(Atomic.action)set

" coherent_memory_use actions lk rf mo hb ==

(* CoRR *)

((ALL (x,a) : rf. ALL (y,b) : rf.

(isa_set_mem (a,b) hb & same_location a b &

is_at_atomic_location lk b)

-->

((x = y) | isa_set_mem (x,y) mo))) &

– p. 8

Features

Logical intersection, syntactic sugar union

higher-order functions

recursive functions and inductive relations

list and set comprehensions

ML-style polymorphism

simple type classes

algebraic and record datatypes

– p. 9

Lem as an Intermediate Language

Lem

Latex

HOL4 Isabelle/HOL OCaml HaskellHOL Light

Ott

HOL4 Isabelle/HOL OCaml HaskellHOL LightCoq

Coq

– p. 10

Lem and Ott

Ott:

rich syntax support

lacking sets, functions, polymorphism, etc.

for PL formalisation only

Lem:

generally applicable

rich higher-order logic

lacking rich syntactic extension

– p. 11

Conclusion

Lem is work in progress

C, C++, POWER, and ARM models

Exports OCaml, HOL-4, Isabelle/HOL, Latex, and soon Coq

Imports . . .

Get Lem alpha version:
http://www.cl.cam.ac.uk/~so294/lem/

– p. 12

http://www.cl.cam.ac.uk/~so294/lem/

"Lem"?

Lightweight executable mathematics

Stanisław Lem

Lemma

– p. 13

	Heavyweight Semantics
	Lem: a Lightweight Tool
	Example in Lem
	Example in Latex
	Example in OCaml
	Example in HOL-4
	Example in Isabelle/HOL
	Features
	Lem as an Intermediate Language
	Lem and Ott
	Conclusion
	"Lem"?

