
A verified runtime for
 a verified theorem prover

Magnus Myreen1 and Jared Davis2

1 University of Cambridge, UK
2 Centaur Technology, USA

ITP 2011

Two projects meet

Jared Davis Magnus Myreen

A self-verifying
theorem prover

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

Two projects meet

Jared Davis Magnus Myreen

A self-verifying
theorem prover

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp.
Can I try your verified Lisp interpreter?

Two projects meet

Jared Davis Magnus Myreen

A self-verifying
theorem prover

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp.
Can I try your verified Lisp interpreter? Sure, try it.

Two projects meet

Jared Davis Magnus Myreen

A self-verifying
theorem prover

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp.
Can I try your verified Lisp interpreter? Sure, try it.

Does your Lisp support ..., ... and ...?

Two projects meet

Jared Davis Magnus Myreen

A self-verifying
theorem prover

Verified Lisp
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp.
Can I try your verified Lisp interpreter? Sure, try it.

Does your Lisp support ..., ... and ...? No, but it could ...

verified LISP on
ARM, x86, PowerPC

Running Milawa

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

(TPHOLs 2009)

verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

(TPHOLs 2009)

hopelessly “toy”

Jitawa: verified LISP
 with JIT compiler

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:
>500 million unique conses

‣ takes 16 hours to run on a
state-of-the-art runtime (CCL)

Contribution:
‣ a new verified Lisp which is able

to host the Milawa thm prover

Outline

Part 1: Milawa

Part 2: Its new verified runtime

Part 3: Mini-demos, measurements

 A short introdution to

work by Jared Davis

• Milawa is styled after theorem provers
such as NQTHM and ACL2,

• has a small trusted logical kernel similar
to LCF-style provers,

• ... but does not suffer the performance
hit of LCF’s fully expansive approach.

Comparison with LCF approach

work by Jared Davis

LCF-style approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

core

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be reflectively

extended at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core derived rules

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be reflectively

extended at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools
...

core derived rules

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be reflectively

extended at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

starts with very basic definitions and lemmas

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

starts with very basic definitions and lemmas

up to this point the original core is used

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

starts with very basic definitions and lemmas

up to this point the original core is used

this event switches to a new extended core

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

starts with very basic definitions and lemmas

up to this point the original core is used

this event switches to a new extended core

the extended core is used from now onwards

Bootstrapping Milawa
Output from Milawa’s bootstrap proof:

work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
(PRINT (5 DEFINE IFF))
(PRINT (6 VERIFY IFF))
(PRINT (7 VERIFY THEOREM-COMMUTATIVITY-OF-PEQUAL))
...
(PRINT (4611 VERIFY |INSTALL-NEW-PROOFP-LEVEL2.PROOFP|))
(PRINT (4612 SWITCH |LEVEL2.PROOFP|))
(PRINT (4613 VERIFY |BUST-UP-LOGIC.FUNCTION-ARGS-EXPENSIVE|))
...
(PRINT (15685 VERIFY |INSTALL-NEW-PROOFP-LEVEL11.PROOFP|))
(PRINT (15686 SWITCH |LEVEL11.PROOFP|))
...
SUCCESS

starts with very basic definitions and lemmas

up to this point the original core is used

this event switches to a new extended core

the extended core is used from now onwards

10 core extensions during bootstrap

Milawa’s core extensions
work by Jared Davis

core

Milawa’s core extensions
work by Jared Davis

core

can only process primitive inferences, axioms

Milawa’s core extensions
work by Jared Davis

Induction and other tactics

Conditional rewriting

Evaluation and unconditional rewriting
Audit trails (in prep for rewriting)

Case splitting

Factoring, splitting help

Assumptions and clauses
Miscellaneous ground work

Rules about primitive functions

Propositional reasoning

Primitive proof checkercore

 level 2

level 3

level 4

level 5

level 6

level 7

level 8

level 9

level 10

level 11

can only process primitive inferences, axioms

supports high-level tactics, similar to ACL2

Milawa’s core extensions
work by Jared Davis

Induction and other tactics

Conditional rewriting

Evaluation and unconditional rewriting
Audit trails (in prep for rewriting)

Case splitting

Factoring, splitting help

Assumptions and clauses
Miscellaneous ground work

Rules about primitive functions

Propositional reasoning

Primitive proof checkercore

 level 2

level 3

level 4

level 5

level 6

level 7

level 8

level 9

level 10

level 11

can only process primitive inferences, axioms

supports high-level tactics, similar to ACL2

Soundness preserved:

each core extension is proved
correct w.r.t. the current core
before a switch event is allowed.

Milawa’s logic
work by Jared Davis

! !

!"#$%&'()$*+$*$'%*,)-

Sho67, KM98

!!!!

!!!
!

!!""!#$
%!!"$!#

!!"&&&&!!!#
"!#

!
"!!

.#&/0$1)2-3*

4&,+#*)+(&,

56/*,7(&,

877&)(*+(9(+:

4"+

!
!#';,7+*,+(*+(&,

<-=%-6(9(+:$86(&3
"&(&"

5>"*%(+:$86(&3
"
#
&(&$

#
%&%"

'
%(%$

'
%&%"

#
%(%"

'
%&%$

#
%(%$

'

<-=-#-,+(*%$?#*,7/*#-,):
"
#
&(&$

#
%&%)))%&%"

*
%(%$

*
%&%+,"

#%
-%)))-%"

*%
.%(%+,$

#%
-%)))-%$

*%
.

@-+*$<-A")+(&,
%%/%"

#
%)))%"

*
%)%0$&1

#
%)))%1

*
$
%
(%0)*"

#
2%1

#
-%)))-%"

*
2%1

*
+

@*7-$59*%"*+(&,
,-.-/'%(%4

B(7/$86(&37
,-.-/&56*78,56*7,"-%$..%(%1

;,A")+(&,

Milawa’s logic
work by Jared Davis

! !

!"#$%&'()$*+$*$'%*,)-

Sho67, KM98

!!!!

!!!
!

!!""!#$
%!!"$!#

!!"&&&&!!!#
"!#

!
"!!

.#&/0$1)2-3*

4&,+#*)+(&,

56/*,7(&,

877&)(*+(9(+:

4"+

!
!#';,7+*,+(*+(&,

<-=%-6(9(+:$86(&3
"&(&"

5>"*%(+:$86(&3
"
#
&(&$

#
%&%"

'
%(%$

'
%&%"

#
%(%"

'
%&%$

#
%(%$

'

<-=-#-,+(*%$?#*,7/*#-,):
"
#
&(&$

#
%&%)))%&%"

*
%(%$

*
%&%+,"

#%
-%)))-%"

*%
.%(%+,$

#%
-%)))-%$

*%
.

@-+*$<-A")+(&,
%%/%"

#
%)))%"

*
%)%0$&1

#
%)))%1

*
$
%
(%0)*"

#
2%1

#
-%)))-%"

*
2%1

*
+

@*7-$59*%"*+(&,
,-.-/'%(%4

B(7/$86(&37
,-.-/&56*78,56*7,"-%$..%(%1

;,A")+(&,

w.r.t. ordinals up to ε0

Milawa’s logic
work by Jared Davis

! !

!"#$%&'()$*+$*$'%*,)-

Sho67, KM98

!!!!

!!!
!

!!""!#$
%!!"$!#

!!"&&&&!!!#
"!#

!
"!!

.#&/0$1)2-3*

4&,+#*)+(&,

56/*,7(&,

877&)(*+(9(+:

4"+

!
!#';,7+*,+(*+(&,

<-=%-6(9(+:$86(&3
"&(&"

5>"*%(+:$86(&3
"
#
&(&$

#
%&%"

'
%(%$

'
%&%"

#
%(%"

'
%&%$

#
%(%$

'

<-=-#-,+(*%$?#*,7/*#-,):
"
#
&(&$

#
%&%)))%&%"

*
%(%$

*
%&%+,"

#%
-%)))-%"

*%
.%(%+,$

#%
-%)))-%$

*%
.

@-+*$<-A")+(&,
%%/%"

#
%)))%"

*
%)%0$&1

#
%)))%1

*
$
%
(%0)*"

#
2%1

#
-%)))-%"

*
2%1

*
+

@*7-$59*%"*+(&,
,-.-/'%(%4

B(7/$86(&37
,-.-/&56*78,56*7,"-%$..%(%1

;,A")+(&,

evaluation of any lisp primitive applied to constants

w.r.t. ordinals up to ε0

Milawa’s logic
work by Jared Davis

! !

!"#$%&'()$*+$*$'%*,)-

Sho67, KM98

!!!!

!!!
!

!!""!#$
%!!"$!#

!!"&&&&!!!#
"!#

!
"!!

.#&/0$1)2-3*

4&,+#*)+(&,

56/*,7(&,

877&)(*+(9(+:

4"+

!
!#';,7+*,+(*+(&,

<-=%-6(9(+:$86(&3
"&(&"

5>"*%(+:$86(&3
"
#
&(&$

#
%&%"

'
%(%$

'
%&%"

#
%(%"

'
%&%$

#
%(%$

'

<-=-#-,+(*%$?#*,7/*#-,):
"
#
&(&$

#
%&%)))%&%"

*
%(%$

*
%&%+,"

#%
-%)))-%"

*%
.%(%+,$

#%
-%)))-%$

*%
.

@-+*$<-A")+(&,
%%/%"

#
%)))%"

*
%)%0$&1

#
%)))%1

*
$
%
(%0)*"

#
2%1

#
-%)))-%"

*
2%1

*
+

@*7-$59*%"*+(&,
,-.-/'%(%4

B(7/$86(&37
,-.-/&56*78,56*7,"-%$..%(%1

;,A")+(&,

evaluation of any lisp primitive applied to constants

56 axioms describing properties of Lisp primitives
w.r.t. ordinals up to ε0

Trusting Milawa

• logic is sound

• core implements the logic correctly

• runtime executes the core correctly

work by Jared Davis

Milawa is trustworthy if:

If the above are proved, then Milawa could be
“the most trustworthy theorem prover”.

Outline

Part 1: Milawa

Part 2: Its new verified runtime

Part 3: Mini-demos, measurements

Outline

Part 1: Milawa

Part 2: Its new verified runtime

Part 3: Mini-demos, measurements

Requirements on runtime
work by Jared Davis

Milawa uses a subset of Common Lisp which

(Lisp subset defined on later slide.)

is for most part first-order pure functions over
natural numbers, symbols and conses,

cons car cdr consp natp symbolp
equal + - < symbol-< if

uses primitives:

macros: or and list let let* cond
first second third fourth fifth

and a simple form of lambda-applications.

Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

(Lisp subset defined on later slide.)

Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

(Lisp subset defined on later slide.)

Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

}

}

not
necessary

runtime
must support

(Lisp subset defined on later slide.)

Runtime must scale
Designed to scale:

Runtime must scale
Designed to scale:

• dynamic compilation

‣ functions compile to native code

Runtime must scale
Designed to scale:

• dynamic compilation

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

Runtime must scale
Designed to scale:

• dynamic compilation

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

• efficient scannerless parsing + abbreviations

‣ must cope with 4 gigabyte input

Runtime must scale
Designed to scale:

• dynamic compilation

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

• efficient scannerless parsing + abbreviations

‣ must cope with 4 gigabyte input

• graceful exits in all circumstances

‣ allowed to run out of space, but must report it

Constructing the new runtime

1. write simple code

2. then prove it correct

Conventional method?

Method used:

1. write approximately correct algorithm implementation

2. start a verification proof

3. iteratively tweak the code and the proof

Constructing the new runtime

1. specified input language: syntax & semantics

2. verified necessary algorithms, e.g.

• compilation from source to bytecode
• parsing and printing of s-expressions
• copying garbage collection

3. proved refinements from algorithms to x86 code

4. plugged together to form read-eval-print loop

Step-by-step:

AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess

| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num
| Sym string
| Dot sexp sexp

AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess

| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num
| Sym string
| Dot sexp sexp

Example of semantics for macros:

(App (PrimitiveFun Car) [x], env , k, io) ev−→ (ans, env �, k�, io�)
(First x, env , k, io) ev−→ (ans, env �, k�, io�)

compile: AST bytecode list

bytecode ::= Pop pop one stack element
| PopN num pop n stack elements
| PushVal num push a constant number
| PushSym string push a constant symbol
| LookupConst num push the nth constant from system state
| Load num push the nth stack element
| Store num overwrite the nth stack element
| DataOp primitive add, subtract, car, cons, . . .
| Jump num jump to program point n
| JumpIfNil num conditionally jump to n
| DynamicJump jump to location given by stack top
| Call num static function call (faster)
| DynamicCall dynamic function call (slower)
| Return return to calling function
| Fail signal a runtime error
| Print print an object to stdout
| Compile compile a function definition

How do we get compilation to x86?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

How do we get compilation to x86?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in
memory that are x86 machine code

• we prove that jumping to the memory
location of the bytecode executes it

Solution:

How do we get compilation to x86?

We have verified compilation algorithm:

compile: AST bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in
memory that are x86 machine code

• we prove that jumping to the memory
location of the bytecode executes it

Solution:

Treating code as data:

∀p c q. {p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

(POPL’10)

I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin

• printing null-terminated string to stdout

Use of external C routines adds assumptions to proof:

I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin

• printing null-terminated string to stdout

Use of external C routines adds assumptions to proof:

An efficient s-expression parser (and printer) is proved,
which deals with abbreviations:

(append (cons (cons a b) c)
 (cons (cons a b) c))

(append #1=(cons (cons a b) c)
 #1#)

Read-eval-print loop

• Result of reading lazily, writing eagerly

• Eval = compile then jump-to-compiled-code

• Specification: read-eval-print until end of input

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Each execution is
allowed to fail with
an error message.

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

This machine-code Hoare
triple holds only for

terminating executions.

Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Each execution is
allowed to fail with
an error message.

If there is no error message,
then the result is described by
the high-level op. semantics.

There must be enough
memory and I/O

assumptions must hold.

This machine-code Hoare
triple holds only for

terminating executions.

list of numbers

Verified code
 $ cat verified_code.s

 /* Machine code automatically extracted from a HOL4 theorem. */
 /* The code consists of 7423 instructions (31840 bytes). */

 .byte 0x48, 0x8B, 0x5F, 0x18
 .byte 0x4C, 0x8B, 0x7F, 0x10
 .byte 0x48, 0x8B, 0x47, 0x20
 .byte 0x48, 0x8B, 0x4F, 0x28
 .byte 0x48, 0x8B, 0x57, 0x08
 .byte 0x48, 0x8B, 0x37
 .byte 0x4C, 0x8B, 0x47, 0x60
 .byte 0x4C, 0x8B, 0x4F, 0x68
 .byte 0x4C, 0x8B, 0x57, 0x58
 .byte 0x48, 0x01, 0xC1
 .byte 0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
 .byte 0x48, 0x83, 0xC0, 0x04
 .byte 0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
 .byte 0x48, 0x83, 0xC0, 0x04
 ...

Verified code
 $ cat verified_code.s

 /* Machine code automatically extracted from a HOL4 theorem. */
 /* The code consists of 7423 instructions (31840 bytes). */

 .byte 0x48, 0x8B, 0x5F, 0x18
 .byte 0x4C, 0x8B, 0x7F, 0x10
 .byte 0x48, 0x8B, 0x47, 0x20
 .byte 0x48, 0x8B, 0x4F, 0x28
 .byte 0x48, 0x8B, 0x57, 0x08
 .byte 0x48, 0x8B, 0x37
 .byte 0x4C, 0x8B, 0x47, 0x60
 .byte 0x4C, 0x8B, 0x4F, 0x68
 .byte 0x4C, 0x8B, 0x57, 0x58
 .byte 0x48, 0x01, 0xC1
 .byte 0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
 .byte 0x48, 0x83, 0xC0, 0x04
 .byte 0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
 .byte 0x48, 0x83, 0xC0, 0x04
 ...

How is this verified binary produced?
Demo: proof-producing synthesis (TPHOLs’09)

Outline

Part 1: Milawa

Part 2: Its new verified runtime

Part 3: Mini-demos, measurements

Outline

Part 1: Milawa

Part 2: Its new verified runtime

Part 3: Mini-demos, measurements

Running Milawa on Jitawa

CCL
SBCL
Jitawa

 16 hours
 22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Running Milawa on Jitawa

CCL
SBCL
Jitawa

 16 hours
 22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Jitawa’s compiler performs
almost no optimisations.

Running Milawa on Jitawa

CCL
SBCL
Jitawa

 16 hours
 22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Parsing the 4 gigabyte input:

CCL
Jitawa

 716 seconds
 79 seconds

(9x slower than Jitawa!)

Jitawa’s compiler performs
almost no optimisations.

Quirky behaviour

• to hide the fact that compilation occurs

• to keep semantics as simple as possible

• to facilitate future work (e.g. verify Milawa’s core)

Jitawa mimics an interpreter’s behaviour

DEMO

Quirky behaviour

• to hide the fact that compilation occurs

• to keep semantics as simple as possible

• to facilitate future work (e.g. verify Milawa’s core)

Jitawa mimics an interpreter’s behaviour

DEMO

Consequences:

• compiler must turn undefined functions, bad arity
and unknown variables into runtime checks/fails.

• mutual recursion is free!

Conclusions

• new verified runtime

• implements clean Lisp language

• scales and is able to host Milawa theorem prover

Summary

Next year?

• Milawa proved sound down to the machine
code which runs it?

Conclusions

• new verified runtime

• implements clean Lisp language

• scales and is able to host Milawa theorem prover

Summary

Next year?

• Milawa proved sound down to the machine
code which runs it?

Questions?

