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Jitawa: verified LISP 
             with JIT compiler 

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:                   
>500 million unique conses

‣ takes 16 hours to run on a 
state-of-the-art runtime (CCL)

Contribution:
‣ a new verified Lisp which is able 

to host the Milawa thm prover
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 A short introdution to

work by Jared Davis

• Milawa is styled after theorem provers 
such as NQTHM and ACL2,

• has a small trusted logical kernel similar 
to LCF-style provers, 

• ... but does not suffer the performance 
hit of LCF’s fully expansive approach. 
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Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the 

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be reflectively 

extended at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...
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work by Jared Davis

(PRINT (1 VERIFY THEOREM-SUBSTITUTE-INTO-NOT-PEQUAL))
(PRINT (2 VERIFY THEOREM-NOT-T-OR-NOT-NIL))
(PRINT (3 DEFINE NOT))
(PRINT (4 VERIFY NOT))
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SUCCESS
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up to this point the original core is used

this event switches to a new extended core

the extended core is used from now onwards

10 core extensions during bootstrap
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Induction and other tactics

Conditional rewriting

Evaluation and unconditional rewriting
Audit trails (in prep for rewriting)

Case splitting

Factoring, splitting help

Assumptions and clauses
Miscellaneous ground work

Rules about primitive functions

Propositional reasoning

Primitive proof checkercore

 level 2

level 3

level 4

level 5

level 6

level 7

level 8

level 9

level 10

level 11

can only process primitive inferences, axioms

supports high-level tactics, similar to ACL2

Soundness preserved:

each core extension is proved 
correct w.r.t. the current core 
before a switch event is allowed.
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56 axioms describing properties of Lisp primitives
w.r.t. ordinals up to ε0



Trusting Milawa

• logic is sound

• core implements the logic correctly

• runtime executes the core correctly

work by Jared Davis

Milawa is trustworthy if:

If the above are proved, then Milawa could be  
“the most trustworthy theorem prover”.
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Requirements on runtime
work by Jared Davis

Milawa uses a subset of Common Lisp which 

(Lisp subset defined on later slide.)

is for most part first-order pure functions over 
natural numbers, symbols and conses,

cons car cdr consp natp symbolp 
equal + - < symbol-< if

uses primitives:

macros: or and list let let* cond 
first second third fourth fifth

and a simple form of lambda-applications.



Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis
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Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

}

}

not 
necessary

runtime 
must support

(Lisp subset defined on later slide.)
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Runtime must scale
Designed to scale:

• dynamic compilation

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

• efficient scannerless parsing + abbreviations

‣ must cope with 4 gigabyte input

• graceful exits in all circumstances

‣ allowed to run out of space, but must report it



Constructing the new runtime

1. write simple code

2. then prove it correct

Conventional method?

Method used:

1. write approximately correct algorithm implementation

2. start a verification proof

3. iteratively tweak the code and the proof



Constructing the new runtime

1. specified input language: syntax & semantics

2. verified necessary algorithms, e.g.

• compilation from source to bytecode
• parsing and printing of s-expressions
• copying garbage collection

3. proved refinements from algorithms to x86 code

4. plugged together to form read-eval-print loop

Step-by-step:



AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess

| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num
| Sym string
| Dot sexp sexp



AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess

| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num
| Sym string
| Dot sexp sexp

Example of semantics for macros:

(App (PrimitiveFun Car) [x], env , k, io) ev−→ (ans, env �, k�, io�)
(First x, env , k, io) ev−→ (ans, env �, k�, io�)



compile:  AST     bytecode list

bytecode ::= Pop pop one stack element
| PopN num pop n stack elements
| PushVal num push a constant number
| PushSym string push a constant symbol
| LookupConst num push the nth constant from system state
| Load num push the nth stack element
| Store num overwrite the nth stack element
| DataOp primitive add, subtract, car, cons, . . .
| Jump num jump to program point n
| JumpIfNil num conditionally jump to n
| DynamicJump jump to location given by stack top
| Call num static function call (faster)
| DynamicCall dynamic function call (slower)
| Return return to calling function
| Fail signal a runtime error
| Print print an object to stdout
| Compile compile a function definition
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but compiler must produce real x86 code....
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How do we get compilation to x86?

We have verified compilation algorithm:

compile:  AST     bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in 
memory that are x86 machine code

• we prove that jumping to the memory 
location of the bytecode executes it 

Solution:

Treating code as data:

∀p c q. {p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

(POPL’10)
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I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin

• printing null-terminated string to stdout

  

Use of external C routines adds assumptions to proof:

An efficient s-expression parser (and printer) is proved, 
which deals with abbreviations:

(append (cons (cons a b) c)
        (cons (cons a b) c))

(append #1=(cons (cons a b) c)
        #1#)



Read-eval-print loop

• Result of reading lazily, writing eagerly

• Eval = compile then jump-to-compiled-code

• Specification: read-eval-print until end of input



Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
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Correctness theorem

Top-level correctness theorem:

{ init state io ∗ pc p ∗ �terminates for io� }
p : code for entire jitawa implementation

{ error message ∨ ∃io�. �([], io) exec−→ io�� ∗ final state io� }

Each execution is 
allowed to fail with 
an error message.

If there is no error message, 
then the result is described by 
the high-level op. semantics.

There must be enough 
memory and I/O 

assumptions must hold.

This machine-code Hoare 
triple holds only for 

terminating executions.

list of numbers



Verified code
  $ cat verified_code.s

       /*  Machine code automatically extracted from a HOL4 theorem.  */
       /*  The code consists of 7423 instructions (31840 bytes).      */

        .byte   0x48, 0x8B, 0x5F, 0x18
        .byte   0x4C, 0x8B, 0x7F, 0x10
        .byte   0x48, 0x8B, 0x47, 0x20
        .byte   0x48, 0x8B, 0x4F, 0x28
        .byte   0x48, 0x8B, 0x57, 0x08
        .byte   0x48, 0x8B, 0x37
        .byte   0x4C, 0x8B, 0x47, 0x60
        .byte   0x4C, 0x8B, 0x4F, 0x68
        .byte   0x4C, 0x8B, 0x57, 0x58
        .byte   0x48, 0x01, 0xC1
        .byte   0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
        .byte   0x48, 0x83, 0xC0, 0x04
        .byte   0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
        .byte   0x48, 0x83, 0xC0, 0x04
        ...



Verified code
  $ cat verified_code.s

       /*  Machine code automatically extracted from a HOL4 theorem.  */
       /*  The code consists of 7423 instructions (31840 bytes).      */

        .byte   0x48, 0x8B, 0x5F, 0x18
        .byte   0x4C, 0x8B, 0x7F, 0x10
        .byte   0x48, 0x8B, 0x47, 0x20
        .byte   0x48, 0x8B, 0x4F, 0x28
        .byte   0x48, 0x8B, 0x57, 0x08
        .byte   0x48, 0x8B, 0x37
        .byte   0x4C, 0x8B, 0x47, 0x60
        .byte   0x4C, 0x8B, 0x4F, 0x68
        .byte   0x4C, 0x8B, 0x57, 0x58
        .byte   0x48, 0x01, 0xC1
        .byte   0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
        .byte   0x48, 0x83, 0xC0, 0x04
        .byte   0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
        .byte   0x48, 0x83, 0xC0, 0x04
        ...

How is this verified binary produced?
Demo: proof-producing synthesis (TPHOLs’09)



Outline

Part 1:  Milawa

Part 2:  Its new verified runtime

Part 3:  Mini-demos, measurements



Outline

Part 1:  Milawa

Part 2:  Its new verified runtime

Part 3:  Mini-demos, measurements



Running Milawa on Jitawa

CCL
SBCL
Jitawa

  16 hours
  22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)
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Running Milawa on Jitawa

CCL
SBCL
Jitawa

  16 hours
  22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Parsing the 4 gigabyte input:

CCL
Jitawa

  716 seconds
    79 seconds

(9x slower than Jitawa!)

Jitawa’s compiler performs 
almost no optimisations.



Quirky behaviour

• to hide the fact that compilation occurs 

• to keep semantics as simple as possible

• to facilitate future work (e.g. verify Milawa’s core)

Jitawa mimics an interpreter’s behaviour 

DEMO



Quirky behaviour

• to hide the fact that compilation occurs 

• to keep semantics as simple as possible

• to facilitate future work (e.g. verify Milawa’s core)

Jitawa mimics an interpreter’s behaviour 

DEMO

Consequences:

• compiler must turn undefined functions, bad arity 
and unknown variables into runtime checks/fails.

• mutual recursion is free!



Conclusions

• new verified runtime 

• implements clean Lisp language

• scales and is able to host Milawa theorem prover

Summary

Next year?

• Milawa proved sound down to the machine 
code which runs it?



Conclusions

• new verified runtime 

• implements clean Lisp language

• scales and is able to host Milawa theorem prover

Summary

Next year?

• Milawa proved sound down to the machine 
code which runs it?

Questions?


