On the Generation of Positivstellensatz Witnesses in Degenerate Cases Working around geometrical degeneracy in semidefinite programming

David Monniaux

CNRS / VERIMAG A joint laboratory of CNRS and Université Joseph Fourier (Grenoble).

August 25, 2011

To show that F is satisfiable: exhibit \mathcal{M} such that $\mathcal{M} \models F$. But to show that F is unsatisfiable? *Negativa non sunt* probanda.

Witness conveys confidence of proof — opposed to blind trust in a system saying "unsat".

Linear real inequalities

Farkas' lemma:

$$\begin{cases} L_1(x, y, \dots) \leq C_1 \\ \vdots & \vdots & \vdots \\ L_n(x, y, \dots) \leq C_n \end{cases}$$

has no solution iff $\exists \lambda_1, \ldots, \lambda_n \ge 0$ st $\sum_i \lambda_i L_i$ is the null linear form and $\sum_i \lambda_i C_i < 0$, so the combination is $0 \le -1$ (or any $0 \le C$ where C < 0).

Looking for such λ_i = finding a solution to dual system of (in)equalities.

Complex polynomial equalities

Hilbert's Nullstellensatz (on \mathbb{C}):

$$\begin{cases} P_1(x, y, \dots) = 0\\ \vdots & \vdots & \vdots\\ P_n(x, y, \dots) = 0 \end{cases}$$

has no solution iff 1 belongs to the ideal *I* generated by P_1, \ldots, P_n : $\exists Q_1, \ldots, Q_n$ st $\sum_i Q_i P_i = 1$.

Such Q_i can be computed by dividing 1 by a Gröbner basis for P_i (e.g. Buchberger's algorithm).

Good witnesses

Usage: convince people (or Coq or whatever) that a system is unsatisfiable by giving them a witness proving that.

An unsatisfiability witness for a system of relations should be easy to check

- low algorithm and implementation complexity (checking phase should be easy to understand)
- ideally, low time and space complexity

In both previous examples, checking the witness is simple formal math, finding it is harder.

Tackle: polynomial real inequalities.

Hilbert's 17th problem

Proving that P < 0 is unsatisfiable \Leftrightarrow proving $P \ge 0$.

One method: prove that P is a sum of squares of polynomials (SOS). Not a complete method: some $P \ge 0$ are not sums of squares of polynomials.

Artin: any $P \ge 0$ is a sum of squares of rational functions. Thus: any $P \ge 0$ is N/D where N, D sums of squares of polynomials. Equivalently: $PD - N = 0, D \ne 0$

Positivstellensatz

Stengle, 1973

$$\begin{cases} P_1(x, y, \dots) \geq 0 \\ \vdots & \vdots & \vdots \\ P_n(x, y, \dots) \geq 0 \end{cases}$$

has no solution iff there exists Q_j sum of squares of polynomials such that $\sum_j Q_j \tilde{P}_j = -1$, where the \tilde{P}_j are the 2^n products of the form $\prod_i P_i^{\alpha_i}$ where $\alpha_i \in \{0, 1\}$.

The sums-of-squares problem

Given
$$P_1, \ldots, P_n, R \in \mathbb{Q}[X_1, \ldots, X_m]$$
, solve $\sum_i P_i Q_i = R$

where the Q_i are sums of squares of polynomials in $\mathbb{Q}[X_1, \ldots, X_m]$.

Reduction to semidefinite programming

 $Q \in \mathbb{Q}[X_1, \ldots, X_m]$ is a SOS polynomial over monomials m_1, \ldots, m_l iff $Q = m\hat{Q}m^T$ with m vector m_1, \ldots, m_l and \hat{Q} is a positive semidefinite (sdp) rational matrix.

Sdp matrix = symmetric matrix with nonnegative eigenvalues, noted $\hat{Q} \succeq \mathbf{0}$

Thus
$$P_i Q_i = R$$
 iff there exist sdp matrices \hat{Q}_i st
 $\sum_i P_i(m\hat{Q}_i m^T) = R.$

Equality between polynomials iff equality of coefficients for all monomials. Write this as system of equalities between the coefficients of \hat{Q}_i .

Reduction to semidefinite programming

- The coefficients of \hat{Q} satisfy a given system of linear equalities \Rightarrow solve them for a system of generators.
- Then find sdp combination of the generators.
- = semidefinite programming feasibility problem, solved by interior point methods

Summary so far

(See e.g. Harrison TPHOL 2007)

We have reduced unsatisfiability witness search problems to:

- defining some monomial basis m₁,..., m_l (no good bounds on the degrees of the monomials needed, in general)
- ► looking for a rational solution to a pure feasibility semidefinite programming problem $-F_0 + \sum_i \lambda_i F_i \succeq 0$.

(Note: general semidefinite programming = optimize a linear form over the solution set.)

How do we solve the semidefinite programming problem? Numerically, but...

The spectrahedron

The locus of the $(\lambda_1, \ldots, \lambda_d)$ such that $-F_0 + \sum_i \lambda_i F_i \succeq 0$ is sometimes called the spectrahedron.

Its dimension $\leq d$ is the dimension of its affine linear span.

- point: dimension 0
- segment: dimension 1
- disc or square: dimension 2
- cube or spherical ball: dimension 3

Unfortunately, the spectrahedron is not necessarily full dimensional (= is flat).

It is full dimensional iff it has nonempty interior.

In many practical cases, it has empty interior.

For problems with an empty interior, numerical solving fails to produce a checkable solution.

For the most reliable methods,, converge to an approximate solution F: a few very small negative eigenvalues $(-10^{-7} \text{ or so} \text{ on small examples})$.

Articles on exact sdp solving and sums-of-squares generally assume "strict feasibility"!

The problem is easy if strictly feasible

Compute $\tilde{\lambda}$ such that $-F_0 + \sum_i \tilde{\lambda}_i F_i \succeq 0$ according to interior point numerical solving. Interior point solving tends to "push away" from the boundaries and give large eigenvalues. \Rightarrow

There is a ball around $\tilde{\lambda}$ where all matrices are sdp.

Method: round $\tilde{F} = -F_0 + \sum_i \tilde{\lambda}_i F_i$ to a nearby rational matrix $F = -F_0 + \sum_i \lambda_i F_i$ (round $\tilde{\lambda}$ to λ is a simple way), check that $F \succeq 0$ in exact arithmetic (Gaussian reduction).

This is basically Parrilo & Weyl's method.

Pipedream

We have a problem $-F_0 + \sum_{i=1}^d \lambda_i F_i \succeq 0$ with a degenerate spectrahedron.

If we knew the linear affine span of the spectrahedron, we could reparametrize and obtain a non-degenerate problem $-F_0 + \sum_{i=1}^{d'} \lambda_i F'_i \succeq 0$ in a lower dimension d' < d.

How can we know it?

The nullspace of any matrix in the relative interior of the solution set determines the affine span.

Chicken and egg: get a solution, compute the nullspace, compute the affine span, reparametrize... to get a solution

Method: get an approximate solution, compute a reasonable approximate nullspace, etc.

Computing the nullspace

Suppose we have an approximate numerical solution $\tilde{F} = -F_0 + \sum_i \tilde{\lambda}_i F_i$ "almost" $\succeq 0$ and "close" to an exact rational solution F.

Then for all vector v in ker F, \tilde{F} .v is very small.

Bold assumption: ker F has a basis of small integer vectors. Then: look for "small" v such that $\tilde{F}.v$ is very small.

Do it by LLL (Lenstra - Lenstra - Lovasz) lattice reduction.

Algorithm

Repeat until success or failure:

- Solve $\tilde{F} = -F_0 + \sum_{i=1}^d \tilde{\lambda}_i F_i \succeq 0$ numerically.
- ► If failed, answer "failure".
- Round $\tilde{\lambda}_i$ to $\lambda_i \in \mathbb{Q}$.
- ► If $-F_0 + \sum_i \lambda_i F_i \succeq 0$ exactly, answer "success" and print out the λ_i .
- Otherwise, compute some short vectors v such that $\tilde{F}.v$ is small.
- Add the constraint that the solution matrix F should satisfy F.v = 0 to the system, obtain a lower dimension problem.

On Positivstellensatz proofs

$$\left\{ \begin{array}{l} P_1 = x^3 + xy + 3y^2 + z + 1 \ge 0 \\ P_2 = 5z^3 - 2y^2 + x + 2 \ge 0 \\ P_3 = x^2 + y - z \ge 0 \\ P_4 = -5x^2z^3 - 50xyz^3 - 125y^2z^3 + 2x^2y^2 + 20xy^3 \\ +50y^4 - 2x^3 - 10x^2y - 25xy^2 - 15z^3 - 4x^2 \\ -21xy - 47y^2 - 3x - y - 8 \ge 0 \end{array} \right.$$

has no solution, but Mathematica 5 (cylindrical algebraic decomposition) cannot prove it, neither can Redlog and QepCad.

Mathematica 7 can but provides no witness.

Our method quickly finds a witness.

Proving impossibilities

14 problems from John Harrison, e.g.

$$0 \le x \land 0 \le y \land 0 \le z \land (xyz = 1) \implies x + y + z \le x^2 z + y^2 x + z^2 y$$
(1)

John's sdp reduction does not converge due to degeneracy, ours converges.

Took examples in the literature on nonnegative polynomials

- known not to be sums of squares of polynomials
- known to be nonnegative

Compute exact witnesses that they were quotients of sums of squares it at most 7 minutes.

Only one polynomial resisted — large degree, large coefficients, our implementation is too slow.

Coq proof extract

P nonnegative polynomial because P = N/D, N and D sums of squares.

Definition num:=eval_SOS num_decomp. **Definition** denum:=eval_SOS denum_decomp.

Lemma non-critical : forall p q r:Q, $r*q == p \rightarrow p \ge 0 \rightarrow q \ge 0 \rightarrow \tilde{q} == 0 \rightarrow r \ge 0$.

Lemma Ident: poly * denum == num. unfold poly, denum.denum_decomp, num,num_decomp. simpl eval_SOS. ring. Qed.

Lemma T: $denum = 0 \rightarrow poly \ge 0.$ intros. apply non_critical with num denum. apply Ident. apply pos_SOS. apply pos_SOS. assumption. Oed.

Under which conditions of precision does this method converge? How do I set the "scaling factors" used for LLL?

Delicate question: there exist sdp problems that have rational solutions, but none in the relative interior. Thus the assumption that "there is a nearby rational solution" is false in general.

Is it possible to obtain such bad problems from a $\sum_i Q_i P_i = R$ equation $(Q_i \succeq 0)$?

Naive implementation in Sage (Python-based math program). Post-processing to Coq proofs.

Scalability issues.

Recent work: generate the nullspace faster (use multiple matrices in LLL).

