
♺
asopt

On the Generation of Positivstellensatz

Witnesses in Degenerate Cases
Working around geometrical degeneracy in semidefinite

programming

David Monniaux

CNRS / VERIMAG
A joint laboratory of CNRS and Université Joseph Fourier (Grenoble).

August 25, 2011

1 / 24



♺
asopt

Witnesses of unsatisfiability

To show that F is satisfiable: exhibit M such that M |= F .
But to show that F is unsatisfiable? Negativa non sunt
probanda.

Witness conveys confidence of proof — opposed to blind trust
in a system saying “unsat”.

2 / 24



♺
asopt

Linear real inequalities

Farkas’ lemma: 
L1(x , y , . . . ) ≤ C1
...

...
...

Ln(x , y , . . . ) ≤ Cn

has no solution iff ∃λ1, . . . , λn ≥ 0 st
∑

i λiLi is the null linear
form and

∑
i λiCi < 0, so the combination is 0 ≤ −1 (or any

0 ≤ C where C < 0).

Looking for such λi= finding a solution to dual system of
(in)equalities.

3 / 24



♺
asopt

Complex polynomial equalities

Hilbert’s Nullstellensatz (on C):
P1(x , y , . . . ) = 0
...

...
...

Pn(x , y , . . . ) = 0

has no solution iff 1 belongs to the ideal I generated by
P1, . . . ,Pn: ∃Q1, . . . ,Qn st

∑
i QiPi = 1.

Such Qi can be computed by dividing 1 by a Gröbner basis for
Pi (e.g. Buchberger’s algorithm).

4 / 24



♺
asopt

Good witnesses

Usage: convince people (or Coq or whatever) that a system is
unsatisfiable by giving them a witness proving that.

An unsatisfiability witness for a system of relations should be
easy to check

I low algorithm and implementation complexity (checking
phase should be easy to understand)

I ideally, low time and space complexity

In both previous examples, checking the witness is simple
formal math, finding it is harder.

Tackle: polynomial real inequalities.

5 / 24



♺
asopt

Hilbert’s 17th problem

Proving that P < 0 is unsatisfiable ⇔ proving P ≥ 0.

One method: prove that P is a sum of squares of polynomials
(SOS).
Not a complete method: some P ≥ 0 are not sums of squares
of polynomials.

Artin: any P ≥ 0 is a sum of squares of rational functions.
Thus: any P ≥ 0 is N/D where N ,D sums of squares of
polynomials.
Equivalently: PD − N = 0, D 6= 0

6 / 24



♺
asopt

Positivstellensatz

Stengle, 1973 
P1(x , y , . . . ) ≥ 0
...

...
...

Pn(x , y , . . . ) ≥ 0

has no solution iff there exists Qj sum of squares of
polynomials such that

∑
j Qj P̃j = −1, where the P̃j are the 2n

products of the form
∏

i P
αi
i where αi ∈ {0, 1}.

7 / 24



♺
asopt

The sums-of-squares problem

Given P1, . . . ,Pn,R ∈ Q[X1, . . . ,Xm], solve∑
i

PiQi = R

where the Qi are sums of squares of polynomials in
Q[X1, . . . ,Xm].

8 / 24



♺
asopt

Reduction to semidefinite programming

Q ∈ Q[X1, . . . ,Xm] is a SOS polynomial over monomials
m1, . . . ,ml iff Q = mQ̂mT with m vector m1, . . . ,ml and Q̂ is
a positive semidefinite (sdp) rational matrix.

Sdp matrix = symmetric matrix with nonnegative eigenvalues,
noted Q̂ � 0

Thus PiQi = R iff there exist sdp matrices Q̂i st∑
i Pi(mQ̂im

T ) = R .

Equality between polynomials iff equality of coefficients for all
monomials. Write this as system of equalities between the
coefficients of Q̂i .

9 / 24



♺
asopt

Reduction to semidefinite programming

The coefficients of Q̂ satisfy a given system of linear equalities
⇒ solve them for a system of generators.

Then find sdp combination of the generators.

= semidefinite programming feasibility problem, solved by
interior point methods

10 / 24



♺
asopt

Summary so far

(See e.g. Harrison TPHOL 2007)

We have reduced unsatisfiability witness search problems to:

I defining some monomial basis m1, . . . ,ml (no good
bounds on the degrees of the monomials needed, in
general)

I looking for a rational solution to a pure feasibility
semidefinite programming problem −F0 +

∑
i λiFi � 0.

(Note: general semidefinite programming = optimize a linear
form over the solution set.)

How do we solve the semidefinite programming problem?
Numerically, but...

11 / 24



♺
asopt

The spectrahedron

The locus of the (λ1, . . . , λd) such that −F0 +
∑

i λiFi � 0 is
sometimes called the spectrahedron.

Its dimension ≤ d is the dimension of its affine linear span.

I point: dimension 0

I segment: dimension 1

I disc or square: dimension 2

I cube or spherical ball: dimension 3

Unfortunately, the spectrahedron is not necessarily full
dimensional (= is flat).
It is full dimensional iff it has nonempty interior.
In many practical cases, it has empty interior.

12 / 24



♺
asopt

Geometrical degeneracy

For problems with an empty interior, numerical solving fails to
produce a checkable solution.

For the most reliable methods,, converge to an approximate
solution F : a few very small negative eigenvalues (−10−7 or so
on small examples).

Articles on exact sdp solving and sums-of-squares generally
assume “strict feasibility”!

13 / 24



♺
asopt

The problem is easy if strictly feasible

Compute λ̃ such that −F0 +
∑

i λ̃iFi � 0 according to interior
point numerical solving. Interior point solving tends to “push
away” from the boundaries and give large eigenvalues. ⇒

There is a ball around λ̃ where all matrices are sdp.

Method: round F̃ = −F0 +
∑

i λ̃iFi to a nearby rational

matrix F = −F0 +
∑

i λiFi (round λ̃ to λ is a simple way),
check that F � 0 in exact arithmetic (Gaussian reduction).

This is basically Parrilo & Weyl’s method.

14 / 24



♺
asopt

Pipedream

We have a problem −F0 +
∑d

i=1 λiFi � 0 with a degenerate
spectrahedron.

If we knew the linear affine span of the spectrahedron, we
could reparametrize and obtain a non-degenerate problem
−F0 +

∑d ′

i=1 λiF
′
i � 0 in a lower dimension d ′ < d .

How can we know it?

15 / 24



♺
asopt

A simple lemma

The nullspace of any matrix in the relative interior of the
solution set determines the affine span.

Chicken and egg: get a solution, compute the nullspace,
compute the affine span, reparametrize. . . to get a solution

Method: get an approximate solution, compute a reasonable
approximate nullspace, etc.

16 / 24



♺
asopt

Computing the nullspace

Suppose we have an approximate numerical solution
F̃ = −F0 +

∑
i λ̃iFi “almost” � 0 and “close” to an exact

rational solution F .

Then for all vector v in ker F , F̃ .v is very small.

Bold assumption: ker F has a basis of small integer vectors.
Then: look for “small” v such that F̃ .v is very small.

Do it by LLL (Lenstra - Lenstra - Lovasz) lattice reduction.

17 / 24



♺
asopt

Algorithm

Repeat until success or failure:

I Solve F̃ = −F0 +
∑d

i=1 λ̃iFi � 0 numerically.

I If failed, answer “failure”.

I Round λ̃i to λi ∈ Q.

I If −F0 +
∑

i λiFi � 0 exactly, answer “success” and print
out the λi .

I Otherwise, compute some short vectors v such that F̃ .v
is small.

I Add the constraint that the solution matrix F should
satisfy F .v = 0 to the system, obtain a lower dimension
problem.

18 / 24



♺
asopt

On Positivstellensatz proofs



P1 = x3 + xy + 3y 2 + z + 1 ≥ 0
P2 = 5z3 − 2y 2 + x + 2 ≥ 0
P3 = x2 + y − z ≥ 0
P4 = −5x2z3 − 50xyz3 − 125y 2z3 + 2x2y 2 + 20xy 3

+50y 4 − 2x3 − 10x2y − 25xy 2 − 15z3 − 4x2

−21xy − 47y 2 − 3x − y − 8 ≥ 0

has no solution, but Mathematica 5 (cylindrical algebraic
decomposition) cannot prove it, neither can Redlog and
QepCad.
Mathematica 7 can but provides no witness.

Our method quickly finds a witness.

19 / 24



♺
asopt

Proving impossibilities

14 problems from John Harrison, e.g.

0 ≤ x∧0 ≤ y∧0 ≤ z∧(xyz = 1) =⇒ x+y+z ≤ x2z+y 2x+z2y
(1)

John’s sdp reduction does not converge due to degeneracy,
ours converges.

20 / 24



♺
asopt

Proving nonnegativity

Took examples in the literature on nonnegative polynomials

I known not to be sums of squares of polynomials

I known to be nonnegative

Compute exact witnesses that they were quotients of sums of
squares it at most 7 minutes.

Only one polynomial resisted — large degree, large
coefficients, our implementation is too slow.

21 / 24



♺
asopt

Coq proof extract
P nonnegative polynomial because P = N/D, N and D sums
of squares.

Definition num:=eval SOS num decomp .
Definition denum:=eval SOS denum decomp .

Lemma n o n c r i t i c a l : f o r a l l p q r :Q, r ∗q == p → p≥
0 → q≥0 → ˜ q == 0 → r ≥0 .

Lemma Ident : poly ∗ denum == num.
unfold poly , denum , denum decomp , num, num decomp .
simpl eval SOS . ring .
Qed .

Lemma T:˜denum == 0 → poly ≥0 .
i n t r o s .
apply n o n c r i t i c a l with num denum .
apply Ident . apply pos SOS . apply pos SOS .
assumption .
Qed .

22 / 24



♺
asopt

Open problems

Under which conditions of precision does this method
converge? How do I set the “scaling factors” used for LLL?

Delicate question: there exist sdp problems that have rational
solutions, but none in the relative interior. Thus the
assumption that “there is a nearby rational solution” is false in
general.

Is it possible to obtain such bad problems from a
∑

i QiPi = R
equation (Qi � 0)?

23 / 24



♺
asopt

So far

Naive implementation in Sage (Python-based math program).
Post-processing to Coq proofs.

Scalability issues.

Recent work: generate the nullspace faster (use multiple
matrices in LLL).

24 / 24


	Unsatisfiability witnesses
	Sums-of-squares
	Semidefinite programming and degeneracy
	The magical solution
	Results
	Future work and conclusion

