On the Generation of Positivstellensatz Witnesses in Degenerate Cases

Working around geometrical degeneracy in semidefinite programming

David Monniaux

CNRS / VERIMAG
A joint laboratory of CNRS and Université Joseph Fourier (Grenoble).

August 25, 2011

Witnesses of unsatisfiability

To show that F is satisfiable: exhibit \mathcal{M} such that $\mathcal{M} \models F$. But to show that F is unsatisfiable? Negativa non sunt probanda.

Witness conveys confidence of proof - opposed to blind trust in a system saying "unsat".

Linear real inequalities

Farkas' lemma:

$$
\begin{cases}L_{1}(x, y, \ldots) & \leq C_{1} \\ \vdots & \vdots \\ L_{n}(x, y, \ldots) & \leq C_{n}\end{cases}
$$

has no solution iff $\exists \lambda_{1}, \ldots, \lambda_{n} \geq 0$ st $\sum_{i} \lambda_{i} L_{i}$ is the null linear form and $\sum_{i} \lambda_{i} C_{i}<0$, so the combination is $0 \leq-1$ (or any $0 \leq C$ where $C<0)$.

Looking for such $\lambda_{i}=$ finding a solution to dual system of (in)equalities.

Complex polynomial equalities

Hilbert's Nullstellensatz (on \mathbb{C}):

$$
\left\{\begin{array}{lll}
P_{1}(x, y, \ldots) & = & 0 \\
\vdots & \vdots & \vdots \\
P_{n}(x, y, \ldots) & = & 0
\end{array}\right.
$$

has no solution iff 1 belongs to the ideal / generated by
$P_{1}, \ldots, P_{n}: \exists Q_{1}, \ldots, Q_{n}$ st $\sum_{i} Q_{i} P_{i}=1$.
Such Q_{i} can be computed by dividing 1 by a Gröbner basis for P_{i} (e.g. Buchberger's algorithm).

Good witnesses

Usage: convince people (or Coq or whatever) that a system is unsatisfiable by giving them a witness proving that.

An unsatisfiability witness for a system of relations should be easy to check

- low algorithm and implementation complexity (checking phase should be easy to understand)
- ideally, low time and space complexity

In both previous examples, checking the witness is simple formal math, finding it is harder.

Tackle: polynomial real inequalities.
CMIS

Hilbert's 17th problem

Proving that $P<0$ is unsatisfiable \Leftrightarrow proving $P \geq 0$.
One method: prove that P is a sum of squares of polynomials (SOS).
Not a complete method: some $P \geq 0$ are not sums of squares of polynomials.

Artin: any $P \geq 0$ is a sum of squares of rational functions. Thus: any $P \geq 0$ is N / D where N, D sums of squares of polynomials.
Equivalently: $P D-N=0, D \neq 0$

CNIS

Positivstellensatz

Stengle, 1973

$$
\begin{cases}P_{1}(x, y, \ldots) & \geq 0 \\ \vdots & \vdots \\ P_{n}(x, y, \ldots) & \geq 0\end{cases}
$$

has no solution iff there exists Q_{j} sum of squares of polynomials such that $\sum_{j} Q_{j} \tilde{P}_{j}=-1$, where the \tilde{P}_{j} are the 2^{n} products of the form $\prod_{i} P_{i}^{\alpha_{i}}$ where $\alpha_{i} \in\{0,1\}$.

The sums-of-squares problem

Given $P_{1}, \ldots, P_{n}, R \in \mathbb{Q}\left[X_{1}, \ldots, X_{m}\right]$, solve

$$
\sum_{i} P_{i} Q_{i}=R
$$

where the Q_{i} are sums of squares of polynomials in $\mathbb{Q}\left[X_{1}, \ldots, X_{m}\right]$.

Reduction to semidefinite programming

$Q \in \mathbb{Q}\left[X_{1}, \ldots, X_{m}\right]$ is a SOS polynomial over monomials m_{1}, \ldots, m_{l} iff $Q=m \hat{Q} m^{\top}$ with m vector m_{1}, \ldots, m_{l} and \hat{Q} is a positive semidefinite (sdp) rational matrix.

Sdp matrix $=$ symmetric matrix with nonnegative eigenvalues, noted $\hat{Q} \succeq 0$

Thus $P_{i} Q_{i}=R$ iff there exist sdp matrices \hat{Q}_{i} st $\sum_{i} P_{i}\left(m \hat{Q}_{i} m^{T}\right)=R$.
Equality between polynomials iff equality of coefficients for all monomials. Write this as system of equalities between the coefficients of \hat{Q}_{i}.

Reduction to semidefinite programming

The coefficients of \hat{Q} satisfy a given system of linear equalities \Rightarrow solve them for a system of generators.

Then find $s d p$ combination of the generators.
$=$ semidefinite programming feasibility problem, solved by interior point methods

Summary so far

(See e.g. Harrison TPHOL 2007)
We have reduced unsatisfiability witness search problems to:

- defining some monomial basis m_{1}, \ldots, m_{l} (no good bounds on the degrees of the monomials needed, in general)
- looking for a rational solution to a pure feasibility semidefinite programming problem $-F_{0}+\sum_{i} \lambda_{i} F_{i} \succeq 0$.
(Note: general semidefinite programming $=$ optimize a linear form over the solution set.)

How do we solve the semidefinite programming problem? Numerically, but...
$11 / 24$

The spectrahedron

The locus of the $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ such that $-F_{0}+\sum_{i} \lambda_{i} F_{i} \succeq 0$ is sometimes called the spectrahedron.

Its dimension $\leq d$ is the dimension of its affine linear span.

- point: dimension 0
- segment: dimension 1
- disc or square: dimension 2
- cube or spherical ball: dimension 3

Unfortunately, the spectrahedron is not necessarily full dimensional ($=$ is flat).
It is full dimensional iff it has nonempty interior. In many practical cases, it has empty interior.

Geometrical degeneracy

For problems with an empty interior, numerical solving fails to produce a checkable solution.

For the most reliable methods,, converge to an approximate solution F : a few very small negative eigenvalues $\left(-10^{-7}\right.$ or so on small examples).

Articles on exact sdp solving and sums-of-squares generally assume "strict feasibility"!

CNIS

The problem is easy if strictly feasible

Compute $\tilde{\lambda}$ such that $-F_{0}+\sum_{i} \tilde{\lambda}_{i} F_{i} \succeq 0$ according to interior point numerical solving. Interior point solving tends to "push away" from the boundaries and give large eigenvalues. \Rightarrow
There is a ball around $\tilde{\lambda}$ where all matrices are sdp.
Method: round $\tilde{F}=-F_{0}+\sum_{i} \tilde{\lambda}_{i} F_{i}$ to a nearby rational matrix $F=-F_{0}+\sum_{i} \lambda_{i} F_{i}$ (round $\tilde{\lambda}$ to λ is a simple way), check that $F \succeq 0$ in exact arithmetic (Gaussian reduction).

This is basically Parrilo \& Weyl's method.

Pipedream

We have a problem $-F_{0}+\sum_{i=1}^{d} \lambda_{i} F_{i} \succeq 0$ with a degenerate spectrahedron.

If we knew the linear affine span of the spectrahedron, we could reparametrize and obtain a non-degenerate problem $-F_{0}+\sum_{i=1}^{d^{\prime}} \lambda_{i} F_{i}^{\prime} \succeq 0$ in a lower dimension $d^{\prime}<d$.

How can we know it?
$15 / 24$

A simple lemma

The nullspace of any matrix in the relative interior of the solution set determines the affine span.

Chicken and egg: get a solution, compute the nullspace, compute the affine span, reparametrize. . . to get a solution

Method: get an approximate solution, compute a reasonable approximate nullspace, etc.

Computing the nullspace

Suppose we have an approximate numerical solution $\tilde{F}=-F_{0}+\sum_{i} \tilde{\lambda}_{i} F_{i}$ "almost" $\succeq 0$ and "close" to an exact rational solution F.

Then for all vector v in $\operatorname{ker} F, \tilde{F} . v$ is very small.
Bold assumption: ker F has a basis of small integer vectors. Then: look for "small" v such that $\tilde{F} . v$ is very small.

Do it by LLL (Lenstra - Lenstra - Lovasz) lattice reduction.

Algorithm

Repeat until success or failure:

- Solve $\tilde{F}=-F_{0}+\sum_{i=1}^{d} \tilde{\lambda}_{i} F_{i} \succeq 0$ numerically.
- If failed, answer "failure".
- Round $\tilde{\lambda}_{i}$ to $\lambda_{i} \in \mathbb{Q}$.
- If $-F_{0}+\sum_{i} \lambda_{i} F_{i} \succeq 0$ exactly, answer "success" and print out the λ_{i}.
- Otherwise, compute some short vectors v such that $\tilde{F} . v$ is small.
- Add the constraint that the solution matrix F should satisfy $F . v=0$ to the system, obtain a lower dimension problem.

CNIS

On Positivstellensatz proofs

$$
\left\{\begin{array}{l}
P_{1}=x^{3}+x y+3 y^{2}+z+1 \geq 0 \\
P_{2}=5 z^{3}-2 y^{2}+x+2 \geq 0 \\
P_{3}=x^{2}+y-z \geq 0 \\
P_{4}=-5 x^{2} z^{3}-50 x y z^{3}-125 y^{2} z^{3}+2 x^{2} y^{2}+20 x y^{3} \\
\quad+50 y^{4}-2 x^{3}-10 x^{2} y-25 x y^{2}-15 z^{3}-4 x^{2} \\
\quad-21 x y-47 y^{2}-3 x-y-8 \geq 0
\end{array}\right.
$$

has no solution, but Mathematica 5 (cylindrical algebraic decomposition) cannot prove it, neither can Redlog and QepCad.
Mathematica 7 can but provides no witness.
Our method quickly finds a witness.

Proving impossibilities

14 problems from John Harrison, e.g.

$$
\begin{equation*}
0 \leq x \wedge 0 \leq y \wedge 0 \leq z \wedge(x y z=1) \Longrightarrow x+y+z \leq x^{2} z+y^{2} x+z^{2} y \tag{1}
\end{equation*}
$$

John's sdp reduction does not converge due to degeneracy, ours converges.

Proving nonnegativity

Took examples in the literature on nonnegative polynomials

- known not to be sums of squares of polynomials
- known to be nonnegative

Compute exact witnesses that they were quotients of sums of squares it at most 7 minutes.

Only one polynomial resisted - large degree, large coefficients, our implementation is too slow.

Coq proof extract

P nonnegative polynomial because $P=N / D, N$ and D sums of squares.
Definition num:=eval_SOS num_decomp.
Definition denum:=eval_SOS denum_decomp.
Lemma non_critical : forall $\mathrm{p} q \mathrm{r}: \mathrm{Q}, \mathrm{r} * \mathrm{q}=\mathrm{p} \rightarrow \mathrm{p} \geq$

$$
0 \rightarrow \mathrm{q} \geq 0 \rightarrow \sim \mathrm{q}=0 \rightarrow \mathrm{r} \geq 0 .
$$

Lemma Ident: poly $*$ denum $=$ num.
unfold poly, denum, denum_decomp, num, num_decomp. simpl eval_SOS. ring.
Qed.
Lemma $\mathrm{T}: \sim$ denum $=0 \rightarrow$ poly ≥ 0.
intros.
apply non_critical with num denum.
apply Ident. apply pos_SOS. apply pos_SOS. assumption.
Qed.

Open problems

Under which conditions of precision does this method converge? How do I set the "scaling factors" used for LLL?

Delicate question: there exist sdp problems that have rational solutions, but none in the relative interior. Thus the assumption that "there is a nearby rational solution" is false in general.
Is it possible to obtain such bad problems from a $\sum_{i} Q_{i} P_{i}=R$ equation $\left(Q_{i} \succeq 0\right)$?

So far

Naive implementation in Sage (Python-based math program). Post-processing to Coq proofs.

Scalability issues.
Recent work: generate the nullspace faster (use multiple matrices in LLL).

