Proving Valid Quantified Boolean Formulas in HOL Light

Ondřej Kunčar

Charles University in Prague
Automated Reasoning Group
http://arg.mff.cuni.cz
ITP, Nijmegen, August 25, 2011

Quantified Boolean Formula (QBF)

QBF informally

QBF = a propositional formula + quantifiers over Boolean variables

Example of a QBF

$\forall x_{1} \forall x_{2} \exists x_{3} . x_{3} \Leftrightarrow\left(\left(x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right)\right)$
Applications:

- every finite two-player game can be encoded as a QBF
- in model checking
- in planning
- a natural framework for multiagent settings

Valid Quantified Boolean Formulas

QBF vs. SAT

- QBF can be seen as generalization of SAT problem
- transform the question " $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is satisfiable?" to
- the question "does $\exists x_{1} \exists x_{2} \ldots \exists x_{n} . \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ evaluate to true?"

importance of QBF

- "is the given QBF true (=valid)?"
- the canonical PSPACE-complete problem
- captures many problems in a natural and compact way

QBF Solvers

- automatically decide validity of QBF
- some of them can generate a certificate
- which witnesses the output
- Squolem, sKizzo, yQuaffle, ...
- Squolem - a state-of-the-art QBF solver
- simple certificates
- competitive performance

Big Picture

Big Picture

Motivation

(1) To increase the amount of automation of interactive theorem provers (ITPs).

- we have to construct a proof
- lengthy
- requires a considerable human effort.
(2) An independent check of correctness of QBF solvers.
- QBF solvers are complex tools
- HOL Light can serve as another independent check
- the LCF-style kernel provides very high assurance

A Bug in Squolem

- We really found a bug in Squolem.
- If an input contains tautological clauses:
- Squolem 1.0 gives an incorrect answer (i.e., invalid)
- Squolem 2.0 gives a correct answer
- but still an incorrect certificate
- The bug was resolved in Squolem 2.01.
- after we pointed out the problem to Ch. Wintersteiger

Related Work

- T. Weber, 2010: Integration of Squolem into HOL4 for invalid formulas
- based on Q-resolution
- R. Kumar, T. Webber, 2011: Integration of Squolem into HOL4 for valid formulas
- ITP 2011: in couple of minutes :)
- other integrations
- Ramana and Tjark are going to tell you more

Squolem's Certificate of Validity: Example

A QBF model = a set of witness functions.

QBF

$\forall x_{1} \forall x_{2} \exists x_{3} .\left(x_{3} \vee x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{3} \vee\right.$ $\left.\neg x_{1} \vee \neg x_{2}\right)$

Squolem's Certificate/Model

$$
\begin{aligned}
& q_{1} \Leftrightarrow x_{1} \wedge \neg x_{2} \\
& q_{2} \Leftrightarrow \neg x_{1} \wedge x_{2} \\
& q_{3} \Leftrightarrow\left(q_{1} \wedge q_{1}\right) \vee\left(\neg q_{1} \wedge q_{2}\right) \quad\left(=\text { if } q_{1} \text { then } q_{1} \text { else } q_{2}\right) \\
& x_{3} \Leftrightarrow q_{3}
\end{aligned}
$$

Model term

We make a model term from Squolem's certificate C :

Squolem's Certificate/Model

$$
\begin{aligned}
& q_{1} \Leftrightarrow x_{1} \wedge \neg x_{2} \\
& q_{2} \Leftrightarrow \neg x_{1} \wedge x_{2} \\
& q_{3} \Leftrightarrow\left(q_{1} \wedge q_{1}\right) \vee\left(\neg q_{1} \wedge q_{2}\right) \quad\left(=\text { if } q_{1} \text { then } q_{1} \text { else } q_{2}\right) \\
& x_{3} \Leftrightarrow q_{3}
\end{aligned}
$$

Model term

$$
\begin{aligned}
& \mathfrak{M}_{C}=\left(q_{1} \Leftrightarrow x_{1} \wedge \neg x_{2}\right) \wedge\left(q_{2} \Leftrightarrow \neg x_{1} \wedge x_{2}\right) \wedge \\
& \left(q_{3} \Leftrightarrow\left(q_{1} \wedge q_{1}\right) \vee\left(\neg q_{1} \wedge q_{2}\right)\right) \wedge x_{3} \Leftrightarrow q_{3}
\end{aligned}
$$

\mathfrak{M}_{C} is called a model term.

Validating Squolem's certificate

Let us have a valid QBF

$$
\Phi=Q_{1} x_{1} \ldots Q_{n} x_{n} \cdot \phi
$$

Squolem's certificate C of Φ and the corresponding model term \mathfrak{M}_{C}.

Observation

The propositional formula $\mathfrak{M}_{C} \Rightarrow \phi$ is a tautology if and only if C is a model of Φ.

We use already done integration of SAT solvers Minisat and zChaff in HOL Light (T. Weber, H. Amjad, 2009).

Outline of Proof Construction

(1) validate that \mathfrak{M}_{C} is a model of Φ (using SAT solver):
$\vdash \mathfrak{M}_{C} \Rightarrow \phi$

Outline of Proof Construction

(1) validate that \mathfrak{M}_{C} is a model of Φ (using SAT solver):
$\vdash \mathfrak{M}_{C} \Rightarrow \phi$
(2) add quantifiers (see the paper):
$\vdash \mathbf{Q}_{\mathbf{e}} \mathfrak{M}_{C} \Rightarrow \mathbf{Q} \phi$

Outline of Proof Construction

(1) validate that \mathfrak{M}_{C} is a model of Φ (using SAT solver):
$\vdash \mathfrak{M}_{C} \Rightarrow \phi$
(2) add quantifiers (see the paper):
$\vdash \mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C} \Rightarrow \mathbf{Q} \phi$
(3) prove $\mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}$ by our tactic LIFT (see the paper):
$\vdash \mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}$

Outline of Proof Construction

(1) validate that \mathfrak{M}_{C} is a model of Φ (using SAT solver):
$\vdash \mathfrak{M}_{C} \Rightarrow \phi$
(2) add quantifiers (see the paper):
$\vdash \mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C} \Rightarrow \mathbf{Q} \phi$
(3) prove $\mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}$ by our tactic LIFT (see the paper):
$\vdash \mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}$
(4) use modus ponens and derive:

HOL Light is slow

After we implemented optimizations, performance was still poor. Thus we have done some profiling:

- The system spent 99.4 \% of the run-time in HOL Light's kernel function alphaorder!!
- alphaorder implements the order of HOL Light's terms
- with the property that alpha-equivalent terms are equal
- used for the test that two terms are alpha-equivalent
- common test: e.g. in modus ponens (MP)

Alphaorder: Implementation

alphaorder t1 t2

- go simultaneously through (up to bottom) the structure of t1 and t2 and compare recursively smaller parts
- maintain a list of pairs of alpha-equivalent bound variables
- if $t 1$ is $\lambda x . s_{1}$ and $t 2$ is $\lambda y . s_{2}$, add the new pair of alpha-equivalent variables (x, y)
- if you need compare two variables, check the list of alpha-equivalent variables first
- in linear time
- ineffective for formulas with many abstractions
- for the whole formula in quadratic time
- our QBFs have thousands of variables \Longrightarrow thousands abstractions

Alphaorder: Optimization

Observation

Alpha-equivalence of two identical terms is even quadratic because the pair (x, y) is added to the list even if x and y are identical variables.

Optimization: don't do that!

- It allows the pointer-EQ shortcut inside terms with abstractions.
- accepted to HOL Light's code in the revision r83.
- We measured a speed-up factor of 321.0 due to alpha-equivalence optimization.
- measured on problems with the time limit 13 seconds

Evaluation

We used the standard 2005 fixed instance and 2006 preliminary QBF-Eval data sets - 445 QBF instances.

- Squolem solved 100 instances (valid) = our evaluation data set.

Run-times

time limit (s)	succ. rate (\%)	average time (s)	quantifier blocks	variables	clauses
5	33	0.9	41	286	649
60	53	12	53	1378	5458
600	81	73	133	3015	17752
3000	94	248	133	11570	19663

Conclusion: Example

impl04: a QBF instance, only 18 variables.
Without our system:

```
# MESON [] implO4;;
CPU time (user): 1516.384475
```

With our system:

```
# PROVE_QBF impl04;;
CPU time (user): 0.32195
```


Extended Quantifier Prefix

Each extension defines a new fresh variable. We need to incorporate these variables into the quantifier prefix of Φ

Quantifier Prefix

$\mathbf{Q}=\forall x_{1} \forall x_{2} \exists x_{3}$.

$$
\begin{aligned}
& q_{1} \Leftrightarrow x_{1} \wedge \neg x_{2} \rightsquigarrow q_{1} \text { depends on } x_{1} \text { and } x_{2} \\
& q_{2} \Leftrightarrow \neg x_{1} \wedge x_{2} \rightsquigarrow q_{2} \text { depends on } x_{1} \text { and } x_{2} \\
& q_{3} \Leftrightarrow\left(q_{1} \wedge q_{1}\right) \vee\left(\neg q_{1} \wedge q_{2}\right) \rightsquigarrow q_{3} \text { depends on } q_{1} \text { and } q_{2} \\
& x_{3} \Leftrightarrow q_{3} \rightsquigarrow x_{3} \text { depends on } q_{3}
\end{aligned}
$$

Extended Quantifier Prefix

$\mathbf{Q}_{\mathbf{e}}=\forall x_{1} \forall x_{2} \exists q_{2} \exists q_{1} \exists q_{3} \exists x_{3}$

How to prove $\mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}$?

Prove $\mathbf{Q}_{j} E_{j}$ for each extension and witness assignment:

Example

$$
\begin{aligned}
q_{1} \Leftrightarrow x_{1} & \wedge \neg x_{2} \quad \rightsquigarrow \\
& \vdash \forall x_{1} \forall x_{2} \exists q_{1} \cdot q_{1} \Leftrightarrow x_{1} \wedge \neg x_{2} \quad\left(\mathbf{Q}_{1} E_{1}\right)
\end{aligned}
$$

Use our rule LIFT and do "lifting":

$$
\frac{\vdash\left(\mathbf{Q}_{1} E_{1}\right) \wedge \cdots \wedge\left(\mathbf{Q}_{N} E_{N}\right)}{\vdash \mathbf{Q}_{\mathbf{e}}\left(E_{1} \wedge \cdots \wedge E_{N}\right)\left(=\mathbf{Q}_{\mathrm{e}} \mathfrak{M}_{C}\right)} N-1 \text { calls of LIFT }
$$

LIFT is a key part of our system. See the paper for more details.

