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Intel Confidential – Internal Only

Communication Fabrics 
= logic connecting different agents on a chip

IDF 2009

• Many interconnect fabrics talking to each other (NoCs like or ad hoc)

– Coherent interconnect between cores

– IO fabrics, memory fabrics

– Sideband fabrics for power management or debug

• Critical for fast product integration, correctness and quality (performance, power, cost)

Intel® Xeon® processor 7500. 8 cores, 16 threads, 
24 MB LLC, glueless 8 socket systems

Intel® Atom® processor CE4100
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Verification of communication fabrics is complex

 Tricky, distributed 
interaction

– deadlock 

– starvation 

– Ordering

 Problems seen late

– during integration 

– late RTL or in silicon
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Our Approach

Build early, abstract models of the microarchitecture
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agent Q

agent P

x  x = req

req

req

x  rsp
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fabric2 2 2 2 2 2

x  x = req

Goal: Prove correctness on these models
and influence development of micro-architecture
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Two key ideas 
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1. Capture models at a 
“high-level” of abstraction

2. Exploit high-level 
structure for quick 
automatic proofs

Can prove properties that are otherwise intractable with 
automatic methods (model checking) or require tedious 
manual work (theorem proving)
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Outline

How to capture “high-level” structure?

How to exploit “high-level” structure?

Sat Chatterjee, Mike Kishinevsky, Umit Ogras “Quick Formal Modeling of 
Communication Fabrics to Enable Verification” HLDVT 2010

Sat Chatterjee, Mike Kishinevsky “Automatic Generation of Inductive Invariants 
from High-Level Microarchitectural Models of Communication Fabrics” CAV 2010

Alexander Gotmanov, Sat Chatterjee, Mike Kishinevsky “Verifying Deadlock-
Freedom of Communication Fabrics” VMCAI 2011

ABC system (Alan Mishchenko, Bob Brayton, Sat Chatterjee and recently Niklas 
Een) : Berkeley Logic Synthesis Group. http://www.eecs.berkeley.edu/~alanmi/abc/

Sayak Ray implemented l2s command for converting liveness to safety using 
Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. 
Electronic Notes in Theoretical Computer Science 66(2), 160 – 177 (2002) 

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
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xMAS Compositional Modeling

Kernel primitives

source

e

sink fork

f

g

join

h

switch

sf

function

k

queue merge

Models (including bigger modules) are networks of primitives

Behavior: sequences of data transfers

k k

0 (6-bit)

x y z
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Synchronous Semantics

k k

data

trdy

irdy

data

trdy

irdy

data

trdy

irdy
FIFO of size k FIFO of size k

=

Each primitive is a synchronous module (think single clock Verilog) 

Different modules are connected by channels

Channel with 
synchronous handshake

Transfer: xfer(u) = u.irdy & u.trdy

u
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Synchronous model of a fork

a

b

i

a.irdy := i.irdy and b.trdy

b.irdy := i.irdy and a.trdy

i.trdy := a.trdy and b.trdy

a.data := i.data

b.data := i.data

i.irdy

a.trdy

b.trdy
i.trdy

a.irdy

b.irdy

Equations Netlist (control part)

Lazy fork: waits for readiness of 
both targets and then transfers

xfer(i) = xfer(a) = xfer(b)
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Two examples of common 
macro modules

~ ~ =i o i o
k

i o o

k

i=

token

non-deterministic delay credit logic
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xMAS Semantics

is short-hand for

Primitives are parameterized

Example

f
data

trdy

irdy

data

trdy

irdy
f

data

trdy

irdy

data

trdy

irdy

data

trdy

irdy
FIFO of size k FIFO of size k

data

trdy

irdy
+ 42

k k(x  x+42)

11



12

Virtual Channels
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agent Q

agent P

x  x = req

req

req

x  rsp

x  rsp

fabric2 2 2 2 2 2

x  x = req

Agent P

Agent Q

Fabric

The diagram is the formal model!12
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Virtual Channels
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x  x = req
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Quiz: Is there a deadlock?
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x  x = req
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Quiz: Is there a deadlock?
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x  x = req

15

K+2

K+2



16

Quiz: Is there a deadlock? Answer
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agent Q

agent P

x  x = req

req

req

x  rsp

x  rsp

fabric2 2 2 2 2 2

x  x = req

16

K+2
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rsp

req
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Outline

How to capture “high-level” structure?

How to exploit “high-level” structure?
– Safety properties

– Liveness properties
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A Simple Example

k k

0 (6-bit)

x y z

4 4

Although this property is obviously true:

― Interpolation (in ABC) takes 10 mins to prove this!

― Explicit or BDD-based reachability not an option for large 
models

(queue 1) (queue 2)

Example of channel property: 

G (z.irdy  (z.data = 0))

A channel property checks that all packets on a channel 
satisfy some condition

― e.g. all packets received by an agent have correct dest_id

18
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Property propagation

k k

0 (6-bit)

x y z

Target channel property: 

G (z.irdy  (z.data = 0))

4 4

(queue 1) (queue 2)

Use high-level structure to add invariants 
for inductive strengthening 

Invariant  1: 

Invariant 2: G (y.irdy  (y.data = 0))

Invariant  3: G (usedj  (memj = 0))         (For queue 1)

G (usedj  (memj = 0)) If location j in queue 2 
is in use, it must 
contain 0

This set of invariants is inductive!

Automatic: based on property propagation 
and local invariants of queues 
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Similar propagation for other primitives

k

x y z

v  v + 7

0 (6-bit)

Property: G (z.irdy  (z.data = 7))

Invariant: G (y.irdy  ((y.data+7)=7)) 

The invariant is obtained syntactically (no need to invert function)

source

e

sink fork

f

g

join

h

switch

sf

function

k

queue merge

Example: Propagation across function primitive
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source

e

sink fork

f

g

join

h

switch

sf

function

k

queue merge

Careful with Joins

(x, y)  x + yx

y
z

(x, y)  yx

y
z

G (z.irdy  (z.data = 42))

Hard case Easy case

Most joins like this in practice

(used for synchronization)

21
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Non-blocking by Example: Credit Logic

credit 

logic

master M target T

k

k

k

t

r

(outstanding 

credits)

token

(credit queue)

(request 

sink)

(request 

source)

(ingress queue)

s

f

e

p

n

u

v

w

z

Non-blocking property on channel r: G (r.irdy  r.trdy)

Intuition: If a packet is in r there is room in the ingress queue

(useful to reason about liveness) 

Hard property to prove: Not inductive!
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Strengthening non-blocking properties 
using global invariants

credit 

logic

master M target T

k

k

k

t

r

(outstanding 

credits)

token

(credit queue)

(request 

sink)

(request 

source)

(ingress queue)

s

f

e

p

n

u

v

w

z

(Inductive) Invariant: G (numi + numc= numo)

numi

numc

numo

Non-blocking property on channel r: G (r.irdy  r.trdy)

23
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How to find numi + numc= numo automatically?

credit 

logic

master M target T

k

k

k

t

r

(outstanding 

credits)

token

(credit queue)

(request 

sink)

(request 

source)

(ingress queue)

s

f

e

p

n

u

v

w

z

numi

numc
numo

Eliminate λs using modified Gaussian Elimination

Introduce λ variables to count transfers on each channel

24



25

Need more precise analysis

kk

kk kk

kk

~ ~

~~

k k

k k

agent Q

agent P

x  x = req

req

req

x  rsp

x  rsp

fabric2 2 2 2 2 2

x  x = req

 Have to track 
different flows

Need to track numred

and numgreen separately 

for these two queues.

 See CAV10 paper for

 Flow detection

 invariants per flow

25
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Outline

How to capture “high-level” structure?

How to exploit “high-level” structure?
– Safety properties

– Liveness properties
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Linear Temporal Logic (LTL)

LTL is a formal language to reason about 
executions of a state machine in time

• Predicates

– (x < 7), (y-2 == z)

• Propositional connectives

– “·”, “+”, “→”, “¬”, … 

• Temporal operators

– F = “eventually”

– G = “always”
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Deadlock in xMAS

• Deadlock in xMAS is defined for a channel (hence local)

• Dead(u) = F(u.irdy · G¬u.trdy)    “eventually a packet arrives at
input of u, but output of u always blocked”

v2 2u w

token

irdy

data

trdy

• Live(u) = ¬Dead(u) = G(u.irdy → Fu.trdy)
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Fairness Constraints

v2 2u w

token

• Fairness constraint:

GF(x.trdy)

GF(w.trdy)
Live(u)

x

• Fair = conjunction of all fairness constraints 

• Execution of xMAS model is fair if it satisfies all fairness 
constraints
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Channel persistency

Xfer
irdy = 1
trdy = 1

Inactive
irdy = 0
trdy = 0

Source is ready, 
waiting for target

Target is ready, 
waiting for source

FwdRetry
irdy = 1
trdy = 0

BwdRetry
irdy = 0
trdy = 1

A retry state either persists or ends in transfer.

• Every channel in xMAS model is persistent

– Common xMAS primitives are designed to ensure this property

• In practice, many micro-architectures are persistent

• Persistency guarantees that a handshake is never missed

– Rules out some nasty livelock scenarios
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Idle and Block Stuck-at Conditions

For a persistent channel 

Dead(u) = ¬Idle(u) · Block(u)

“u is in deadlock iff u stuck at blocked, but not stuck at idle”

Idle(u) = FG(¬u.irdy) “u (eventually) stuck at idle”

v2 2u w

token

Block(u) = FG(¬u.trdy) “u (eventually) stuck at blocked”

Fair = ¬Block(w)

“sink is fair iff w not stuck at blocked”
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Equations for fork

Idle(u)

Block(u)

Idle(v)

Block(v)

Block(u) = Block(v) + Block(w)

“u stuck at blocked iff v or w stuck at blocked”

Idle(v) = Idle(u) + Block(w)

“v stuck at idle iff u stuck at idle or w stuck at blocked”

u
v

w

Idle(w)

Block(w)

Idle(w) = Idle(u) + Block(v)

“w stuck at idle iff u stuck at idle or v stuck at blocked”

Equations captures relations between Idle and Block conditions on inputs and 
outputs of a fork

u.trdy = v.trdy · w.trdy

v.irdy = u.irdy · w.trdy

w.irdy = u.irdy · v.trdy
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Equations for queue

ku vIdle(u)

Block(u)

Idle(v)

Block(v)

Full(q)

Empty(q)

Block(u) = Full(q) = FG(q.num=k) “q (eventually) stuck at full”

Idle(v)   = Empty(q) = FG(q.num=0) “q (eventually) stuck at empty”

Other equations: ¬Block(v) → ¬Full(q), Empty(q) → Idle(u),

¬Idle(u) · Block(v) → Full(q), etc.

u.trdy = (q.num < k)

v.irdy = (q.num > 0)

…
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Liveness proof

v2 2u w

token

Full(q1) Full(q2)

Block(v)

Block(w)

Block(u) = Full(q1)

Full(q1) → Block(v)

Block(v) = Full(q2)

Full(q2) → Block(w)

Fair = ¬Block(w)

(true for all fair executions)

Dead(u) · DeadEq · Fair = 0 in propositional logic

DeadEq

(true for every 
execution)

There is no fair execution of the model, where channel u is dead.

The above equation captures structural deadlocks 
(reachability from initial state is ignored)

Dead(u) = 

¬Idle(u) · Block(u)

¬Block(w)

If u is in a 
deadlock, then w
should be stuck 

at blocked.
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Adding invariants / 1

Dead(a)

Fair = ¬Block(g)

Dead(a) · DeadEq · Fair has a solution

• Solution is unreachable execution with q1 stuck at empty and q2, q3 stuck at full

a

token

b

d e

2

2 2

c

f

g

q1

q2 q3

• The execution contradicts flow invariant (automatically generated):

q1.num = q2.num + q3.num

Full(q2) Full(q3)

Empty(q1)

Deadlock equations – about executions

Flow invariants – about instantaneous state ?



36

Adding invariants / 2

Dead(a)

Fair = ¬Block(g)

• Add equations connecting Idle, Block, Empty, Full, etc. with instantaneous state 
of the model (q.num, irdy, trdy, etc.):

Empty(q) → (q.num = 0)

Full(q) → (q.num = k)

Idle(u) → (u.irdy = 0)

…

a

token

b

d e

2

2 2

c

f

g

q1

q2 q3

Full(q2) Full(q3)

Empty(q1)

InfEq (eventually true for 
every execution)

• Add any instantaneous invariants (Inv), solve

Dead(u) · DeadEq · Fair · Inv · InfEq for propositional satisfiability
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Method 

As ¬Idle · Block

LTL theorems, describing how Idle and Block propagate 
through primitives

As ¬Block

Dead(u)

DeadEq
(per primitive)

Fair
• UNSAT = Liveness proof

• SAT = Counterexample

+

+

InfEq

+

Connect Idle, Block, etc. with instantaneous state

Inv

+

Automatically generated instantaneous invariants
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Data dependencies / 1

0

1

u
v

w

Idle(u)

Block(u)

Idle(v)

Block(v)

Idle(w)

Block(w)

s(u.data)

¬ s(u.data)

Idle(v) depends on what kind of data is coming from input channel u

Idle(v) = Idle(u) + “all packets are going to the bottom branch”

Propp(x)(u) = FG(u.irdy → p(u.data)) “u (eventually) stuck at p(x)”

Idle(v) = Idle(u) + Prop¬s(x)(u) 

“v stuck at idle, iff u stuck at idle or u stuck at ¬s(x)”

• Prop conditions in addition to Idle and Block, etc.
• Add equations to compute Prop conditions 

u.trdy = u.irdy · (s(u.data) · v.trdy + 

+ ¬ s(u.data) · w.trdy)

v.irdy = u.irdy · s(u.data)

w.irdy = u.irdy · ¬ s(u.data) 



39

Data dependencies / 2

x → f(x)u v

Propp(x)(v)

Propp(x)(v) = Propp(f(x))(u)

“v stuck at p(x) iff u stuck at p(f(x))”

Propp(f(x))(v)

Number of all possible Prop conditions is 
(number of channels) x (average number of predicates per channel).

Linear from size of the model.
May be exponential from width of data on channels, but explosion is 
avoidable in practice
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Accounting for Data dependencies

As ¬Idle · Block

LTL theorems, describing how Idle and Block propagate 
through primitives

As ¬Block

Dead(u)

DeadEq
(per primitive)

Fair
• UNSAT = Liveness proof

• SAT = Counterexample

+

+

InfEq

+

Connect Idle, Block, etc. with instantaneous state

Inv

+

Automatically generated instantaneous invariants

and Prop
Find a set of Prop
conditions to use
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Modeling and Verification Flow

k k(λx.x+42)

C++

xMAS API

(Library)

exec-
utable

by hand

compile

model.v

+

SVA

random
test-

bench.v

run

VCD

Model 
Checker

simulate
(RTL Simulator)

Proof

(from architects)

Formal Analysis

Invariant generation

Deadlock equations

etc.

Other backends to SystemC, TLA, Murphi, etc. possible

To make this 
easier or 
to prove 
without it
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Experimental results: on-die IO fabric

• Size of xMAS model: 775 primitives; 131 queues

• Proving liveness of all channels of interest

– Generate 271 global invariants - 2 sec

– Generate 4361 deadlock equations – 7 sec 

– Solving SAT formulae with ABC (fraig!) - 88 sec

– Total time to prove liveness – 97 sec

• Paranoid mode:

– Proving that all invariants and other safety properties 
hold (17K+ properties) 

– 1-step induction in ABC – 16 hours

Other methods:

– PDR* and interpolation does not converge in a month

– BMC – saturates at 16 frames in a week

42

* Aaron Bradley’s VMCAI-2011 algorithm implemented with improvements in 
ABC by Alan Mishchenko, Niklas Een and Bob Brayton – FMCAD 2011
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Experimental results: finding a bug

Experiment NPrims (NQueues) Time for ABC 

(BMC)

Time for our 
method

2 Master/Slave agents

(no credit logic)

16 (2) 6s <1s

Simple fabric: agent + router

(unfair sink)

57 (20) 4s 2s

Simple fabric: agent + router

(broken credits logic)

57 (20) 8s 2s

Simple fabric: agent + router, 
message ordering 

(unfair sink)

75 (24) 1hr 3s

Simple fabric: agent + router, 
message ordering 

(broken ordering logic)

75 (24) 4hr 3s

Deadlocks found with our method can be unreachable 
(due to over-approximation)

In experiments, all found deadlocks were reachable.
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Outline

How to capture “high-level” structure?

How to exploit “high-level” structure?
– Safety properties

– Liveness properties

– Quality of Service
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Video controller

Communication 
fabric

DRAM

Display
video buffer

constant 
bitrate

Web Camera

…

Audio controller

QoS in System on Chip

Core

latency, 
bandwidth, 
jitter

Scheduler

Cache

Buffer must 
never be empty
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Alternatives for validating QoS

• Simulation – no guarantees

• Analytical methods (e.g. Network Calculus) – too 
conservative

• Formal verification – does not scale

proof
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Toy QoS example

QoS Metrics

• Transaction end-to-end latencies
• and phases of transactions

• Bandwidth of channels

• Queue utilization

• Worst case and average

Refine xMAS primitives:

arbitration algorithm, 
traffic shapers (source rates, sink rates), etc.

p=1/6

2

2

2

a

c

d

q1

q2

q3

b

p=2/6

p=3/6

p
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Other challenges: micro-architectural 
verification

 Handling non-restricted joins

 Inductive proofs for QoS

 Ordering 

 Protocol verification (e.g. cache coherency) and 
uarch verification are currently separate

– Protocol verification abstracts resources

– Uarch verification abstracts data

– Can we do them together on the same model?

– Or is it better to keep a screwdriver and a hammer 
separate?

– Protocol flows must be taken into account 

 Need fast methods for large models (hence 
inductive automatic proofs)
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Other challenges: links to RTL

 Micro-architectural verification often falls between 
the cracks

– Architects are not trained and rely exclusively on intuition 
(which surprisingly often works, except when it does not) 
and performance models 

– Validators are responsible for validating RTL, where 
proving liveness and complex safety properties is 
intractable

 Generate assertions for RTL

– Easy on standard interfaces, but not internal to 
uarchitecture

 RTL and assertion generation from HLM

– Different classes of fabrics require specialized generators
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Other challenges: 
exploration and optimization

 Even more important than verification
– We can ship a product without formally verifying it 

– We cannot ship a product without deciding on micro-
architectural features

 Selection of micro-architectures

 Sizing resources (queues, credits, links,…) 

 But this is another talk



Q&A

51



52

State of the art

• ABC (liveness-to-safety translation)
– Reduces liveness problem to equivalent safety problem 

by circuit transformation
• Doubles number of flops

– BMC can reveal “shallow” deadlocks

– Induction, interpolation, etc.

– Does not scale well to xMAS models with 10s of queues

• NuSMV (LTL model checkers)
– Consistently worse than ABC

• Theorem proving
– Requires expertise and manual work
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Non-restricted join is a problem

h(x,y)
u

wv

• Join is non-restricted if h(x,y) depends on both arguments

Propp(z)(w)

A = “p(h(x,y)) holds 
for any pair of aligned
transfers on u and v”

• “A” cannot be precisely expressed in terms of Idle, Block and Prop variables

• Can handle non-restricted join, if p(h(x,y)) doesn’t depend on both x and y

• Can handle “non-deterministic functions”

• Can over approximate output of non-restricted join with non-deterministic 
function

h(x,y)

e1, e2, ...

u

v w
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Simulation of toy QoS example


