Introduction
000

Formal set-up OO Interfaces Conclusions
000 00000 [e]e]

Verifying object-oriented programs with
higher-order separation logic in Coq

Jesper Bengtson
— Jonas Braband Jensen «+
Filip Sieczkowski
Lars Birkedal

IT University of Copenhagen

August 22, 2011

Introduction
@00

Topic

Two topics

1. How to formalise higher-order separation logic in Coq
2. How to specify object-oriented interface inheritance
o (lass-to-class inheritance considered orthogonal

Introduction

oeo

The story so far

Separation Logic (SL) facilitates reasoning about languages with a
mutable heap, but

e Giving good SL specifications is not a solved problem
e Client code needed for confidence in specification

e Same idea can be formalised in many ways on paper.
Same paper formalisation has many proof assistant encodings.

Focus of this work:
e Make it possible to express interesting specifications

e Proving them is a secondary concern

Introduction
ooe

Separation logic on a slide

Separation logic is a Hoare logic for languages with a mutable heap

e For this presentation, no separation features are needed
e The Hoare triple: {precondition} command {postcondition}

e Example: list reversal
{list(x, o)} reverse(x) {list(x, o)}
expands to

{s. list(s(x),)} reverse(x) {As. list(s(x),a")}

Introduction Formal set-up OO Interfaces Conclusions
000

Desirable properties when in a proof assistant

Names handled by proof assistant

Types handled by proof assistant

Higher-order features handled by proof assistant

e There is no “..." operator or “similar to the previous case”
proof, so choose definitions well.

Maintainable and extensible development across many files

Formal set-up
oeo

Core separation logic theory

Features

e Support for program variables in assertions
e Compatible with higher-order features

Step-indexed specification logic with quantifiers

Nested triples, i.e. step-indexed specifications in assertions

Hoare triple defined on semantic commands

Building blocks for defining control flow constructs:

id seq ¢ éo ¢1+ Co ¢t assume P

Formal set-up
ooe

OO language

e Core theory instantiated with Java-like memory model.

e Assumes a global context of a program: a finite set of classes,
each with fields and methods.

e Uses Coq module system

e Static types replaced by specifications

OO Interfaces
@0000

Example Java program

interface ICell {
Jkk
* Should return the last

* value passed to set() x/ ¢ := new Recell();

int get() c.set(1);
void set(int v); Ermi?;(c 2);

}

assert c.get() = 1;

static void proxySet(ICell ¢, int v) {
c.set(v);

}

Introduction Formal set-up OO Interfaces Conclusions
000 000 0e000 [e]e]

Interfaces as specifications

ICell C'T R ¢ s is a predicate in the specification logic.

ICell & \C': classname.
AT : Type.
AR :wval — T — UPred(heap).
Ag T — wal.
As T = val = 1.
(Vt: T. C:get(this) — {12 this t}_{x. 2 this t Ax =g t}) A
(Vt : T. Cuset(this, x) — {12 this t} {7 this (3¢ x)}) A
(Vt:T,v:wval. g (stwv)=wv)

prozySet _spec =
YO, T,R,q,s. ICell C'T R g s—
Vit - T'. proxySet(c,x) — {c: C AN Rct}{Rc(5tx)}

Introduction Formal set-up OO Interfaces Conclusions
00e00 [e]e]

[e]e]e} 000

Cell instance

Cell_spec = AR : val — val — UPred(heap).
ICell Cell val R (A, v.v) A
Cell::new() — {true} {ret. 12 ret _}

Unfold definitions to get

Cell_spec =
AR : val — val — UPred(heap).
(Vt : T. Cell::get(this) — {72 this t}_{x. 1% this t A x =t}) A
(Vt : T Cell::set(this, x) — {12 this t}_{72 this x}) A
Cell::new() > {true} {ret. R ret _}

Introduction Formal set-up OO Interfaces Conclusions
000 000 00000 [e]e]

Recell instance

Recell_spec &
AR : val — val x val — UPred(heap).
ICell Recell (val x val) R m (M(v,.),v". (v/,v)) A
Recell::new() — {true}_{ret. 12 ret (_,)} A
(Vv, b. Recell::undo(this) — {7 this (v,b)} {7 this (b,b)})

Formal set-up OO Interfaces
ococo 0000e

Proof now possible

{true} {true}
r := new Recell()
{R(r, ()} {B(r, (5))}
r.set(1)
{R(r,(1,)))} {R(r, (1,2)}
{R'(r,1)}
proxySet(r,2)
{R'(r,2)}
{R(r,(2,)} {R(r, (2,1))}

r.undo()
{R(r, ()} {R(r, (1,1))}

More in article

IRecell interface and example client code

How to specify interfaces in general, not just Cell/Recell
Returning an object satisfying some interface
Definitions used in the encoding

Recursion

Conclusions
[1]

Conclusions
oe

Conclusion

e OO interface inheritance can be specified in HOSL
e No special support in logic for APF or inheritance
e Formalisation borrows types, logic variable handling and
higher-order features from Coq

o In this way, we avoid building ad-hoc copies of those features
e Program variable handling is more manual and interacts with
higher-order features.

	Introduction
	Formal set-up
	

	OO Interfaces
	

	Conclusions
	

