
Introduction Formal set-up OO Interfaces Conclusions

Verifying object-oriented programs with
higher-order separation logic in Coq

Jesper Bengtson
→ Jonas Braband Jensen ←

Filip Sieczkowski
Lars Birkedal

IT University of Copenhagen

August 22, 2011

Introduction Formal set-up OO Interfaces Conclusions

Topic

Two topics
1. How to formalise higher-order separation logic in Coq
2. How to specify object-oriented interface inheritance

• Class-to-class inheritance considered orthogonal

Introduction Formal set-up OO Interfaces Conclusions

The story so far

Separation Logic (SL) facilitates reasoning about languages with a
mutable heap, but
• Giving good SL specifications is not a solved problem

• Client code needed for confidence in specification

• Same idea can be formalised in many ways on paper.
Same paper formalisation has many proof assistant encodings.

Focus of this work:
• Make it possible to express interesting specifications
• Proving them is a secondary concern

Introduction Formal set-up OO Interfaces Conclusions

Separation logic on a slide

Separation logic is a Hoare logic for languages with a mutable heap

• For this presentation, no separation features are needed
• The Hoare triple: {precondition} command {postcondition}
• Example: list reversal

{l̂ist(x, α)} reverse(x) {l̂ist(x, α←)}

expands to

{λs. list(s(x), α)} reverse(x) {λs. list(s(x), α←)}

Introduction Formal set-up OO Interfaces Conclusions

Desirable properties when in a proof assistant

• Names handled by proof assistant
• Types handled by proof assistant
• Higher-order features handled by proof assistant
• There is no “. . .” operator or “similar to the previous case”
proof, so choose definitions well.

• Maintainable and extensible development across many files

Introduction Formal set-up OO Interfaces Conclusions

Core separation logic theory

Features
• Support for program variables in assertions

• Compatible with higher-order features

• Step-indexed specification logic with quantifiers
• Nested triples, i.e. step-indexed specifications in assertions
• Hoare triple defined on semantic commands
• Building blocks for defining control flow constructs:

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P

Introduction Formal set-up OO Interfaces Conclusions

OO language

• Core theory instantiated with Java-like memory model.
• Assumes a global context of a program: a finite set of classes,
each with fields and methods.

• Uses Coq module system

• Static types replaced by specifications

Introduction Formal set-up OO Interfaces Conclusions

Example Java program

interface ICell {
/∗∗
∗ Should return the last
∗ value passed to set() ∗/

int get();

void set(int v);
}

static void proxySet(ICell c, int v) {
c.set(v);

}

c := new Recell();
c.set(1);
proxySet(c, 2);
c.undo();
assert c.get() = 1;

Introduction Formal set-up OO Interfaces Conclusions

Interfaces as specifications
ICell C T R g s is a predicate in the specification logic.

ICell , λC : classname.
λT : Type.
λR : val → T → UPred(heap).
λg : T → val .
λs : T → val → T .

(∀t : T . C::get(this) 7→ {R̂ this t} {x. R̂ this t ∧ x = g t}) ∧
(∀t : T . C::set(this, x) 7→ {R̂ this t} {R̂ this (ŝ t x)}) ∧
(∀t : T , v : val . g (s t v) = v)

proxySet spec ,

∀C, T ,R, g, s. ICell C T R g s→
∀t : T . proxySet(c, x) 7→ {c : C ∧ R̂ c t} {R̂ c (ŝ t x)}

Introduction Formal set-up OO Interfaces Conclusions

Cell instance

Cell spec , ∃R : val → val → UPred(heap).

ICell Cell val R (λv. v) (λ , v. v) ∧
Cell::new() 7→ {true} {ret. R̂ ret }

Unfold definitions to get

Cell spec =

∃R : val → val → UPred(heap).

(∀t : T . Cell::get(this) 7→ {R̂ this t} {x. R̂ this t ∧ x = t}) ∧
(∀t : T . Cell::set(this, x) 7→ {R̂ this t} {R̂ this x}) ∧
Cell::new() 7→ {true} {ret. R̂ ret }

Introduction Formal set-up OO Interfaces Conclusions

Recell instance

Recell spec ,

∃R : val → val × val → UPred(heap).

ICell Recell (val × val) R π1 (λ(v,), v′. (v′, v)) ∧
Recell::new() 7→ {true} {ret. R̂ ret (,)} ∧

(∀v, b. Recell::undo(this) 7→ {R̂ this (v, b)} {R̂ this (b, b)})

Introduction Formal set-up OO Interfaces Conclusions

Proof now possible

{true} {true}
r := new Recell()

{R(r, (,))} {R(r, (,))}
r.set(1)

{R(r, (1,))} {R(r, (1,))}
{R′(r, 1)}

proxySet(r,2)

{R′(r, 2)}
{R(r, (2,))} {R(r, (2, 1))}

r.undo()

{R(r, (,))} {R(r, (1, 1))}

Introduction Formal set-up OO Interfaces Conclusions

More in article

• IRecell interface and example client code
• How to specify interfaces in general, not just Cell/Recell
• Returning an object satisfying some interface
• Definitions used in the encoding
• Recursion

Introduction Formal set-up OO Interfaces Conclusions

Conclusion

• OO interface inheritance can be specified in HOSL
• No special support in logic for APF or inheritance

• Formalisation borrows types, logic variable handling and
higher-order features from Coq

• In this way, we avoid building ad-hoc copies of those features
• Program variable handling is more manual and interacts with

higher-order features.

	Introduction
	Formal set-up
	

	OO Interfaces
	

	Conclusions
	

