
Introduction Characterizing polytime functions Application to Cryptography Conclusion

A Formalization of Polytime Functions

Sylvain Heraud1 David Nowak2

1 INRIA Sophia Antipolis-Méditerranée, France

2 ITRI, AIST, Japan

ITP 2011

A Formalization of Polytime Functions 1/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Why formalizing polytime functions is important ?

• In cryptography:

• An adversary with unlimited computational power

could break most cryptographic schemes.

• But it would not be realistic.

• In security proofs, adversaries’ running time is

assumed to be polynomial in the security parameter
(typically the size of the inputs).

A Formalization of Polytime Functions 2/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Why formalizing polytime functions is important ?

• In cryptography:

• An adversary with unlimited computational power

could break most cryptographic schemes.

• But it would not be realistic.

• In security proofs, adversaries’ running time is

assumed to be polynomial in the security parameter
(typically the size of the inputs).

• For NP-Completeness reductions:

To check that a reduction between two NP-complete
problems is polytime [C. Schürmann and J. Shah, 2003]

A Formalization of Polytime Functions 2/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

How formalizing polytime functions ?

• To compute running time, one could formalize a precise

execution model, e.g., Turing machines.

A Formalization of Polytime Functions 3/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

How formalizing polytime functions ?

• To compute running time, one could formalize a precise

execution model, e.g., Turing machines.

• It is simpler to use implicit computational complexity that

relates programming languages with complexity classes.

A Formalization of Polytime Functions 3/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Outline

Characterizing polytime functions

Cobham’s class

Bellantoni-Cook’s class

Translations between the two classes

Application to Cryptography

A Formalization of Polytime Functions 4/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Outline

Characterizing polytime functions

Cobham’s class

Bellantoni-Cook’s class

Translations between the two classes

Application to Cryptography

A Formalization of Polytime Functions 5/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Cobham’s Class - 1964

• Cobham’s class characterizes polytime functions.

• This is exactly the class of functions computable in

polynomial time on a deterministic Turing machine.

• But this is not a fully syntactic characterization:

A bound has to be proved for recursion.

A Formalization of Polytime Functions 6/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Class C (Cobham)

C ::= O constant zero

| Πi projection (i < n)

| Sb successor

| # smash 2|x|.|y |

| Comp h g composition

| Rec g h0 h1 j recursion

• Comp h g(x) = h(g(x))

• Rec g h0 h1 j is equal to the function f such that:

f (ǫ, x) = g(x)
f (yi , x) = hi(y , f (y , x), x)
|f (y , x)| ≤ |j(y , x)| (RecBounded)

⇒ The bound j has to be defined and proved by hand!

A Formalization of Polytime Functions 7/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Properties of C

For each well-formed expression in C, these is a polynomial

that bounds the result.

|f (x)| ≤ (PolC(f))(|x |)

A Formalization of Polytime Functions 8/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Properties of C

For each well-formed expression in C, these is a polynomial

that bounds the result.

|f (x)| ≤ (PolC(f))(|x |)

defined as

PolC(O) = 0

PolC(Π
n
i) = xi

PolC(Sb) = x0 + 1

PolC(#) = x0.x1 + 1

PolC(Compn h g) = (PolC(h))(PolC(g))
PolC(Rec g h0 h1 j) = PolC(j)

A Formalization of Polytime Functions 8/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Outline

Characterizing polytime functions

Cobham’s class

Bellantoni-Cook’s class

Translations between the two classes

Application to Cryptography

A Formalization of Polytime Functions 9/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Bellantoni-Cook’s Class - 1991

• This class is equivalent to the Cobham’s one:

It also characterizes polytime functions.

• But there is no bound to prove here.

• Instead, there are two kinds of variables: “normal” and

“safe”.

f (x1, . . . , xn
︸ ︷︷ ︸

normal

;a1, . . . ,as
︸ ︷︷ ︸

safe

)

• It is not allowed to recur on safe variables.

A Formalization of Polytime Functions 10/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Class B

f (x1, . . . , xn
︸ ︷︷ ︸

normal

;a1, . . . ,as
︸ ︷︷ ︸

safe

)

B ::= 0 constant zero

| π
n,s
i projection (i < n + s)

| sb successor

| pred predecessor

| cond conditional

| compn,s h gN gS composition

| rec g h0 h1 recursion

A Formalization of Polytime Functions 11/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Class B

f (x1, . . . , xn
︸ ︷︷ ︸

normal

;a1, . . . ,as
︸ ︷︷ ︸

safe

)

B ::= 0 constant zero (0,0)
| π

n,s
i projection (n, s)

| sb successor (0,1)
| pred predecessor (0,1)
| cond conditional (0,4)
| compn,s h gN gS composition (n, s)
| rec g h0 h1 recursion (nh, sg)

Here we infer two arities: the number of normal and safe

arguments

A Formalization of Polytime Functions 11/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Class B - Safe recurtion

It is not allowed to recur on safe variables.

Recursion : rec g h0 h1

f (ǫ, ~x ;~a) := g(~x ;~a)
f (yi , ~x ;~a) := hi(y , ~x ; f (y , ~x ;~a), ~a)

Note that:

• The recursive argument y is on normal position.

• The result f (y , ~x ;~a) of the recursive call is in safe position.

A Formalization of Polytime Functions 12/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Class B - Safe recurtion

It is not allowed to recur on safe variables.

Recursion : rec g h0 h1

f (ǫ, ~x ;~a) := g(~x ;~a)
f (yi , ~x ;~a) := hi(y , ~x ; f (y , ~x ;~a), ~a)

Note that:

• The recursive argument y is on normal position.

• The result f (y , ~x ;~a) of the recursive call is in safe position.

Composition : compn,s h gN gS

f (~x ;~a) := h(~gn(~x ;);~gs(~x ;~a))

A Formalization of Polytime Functions 12/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

plus := rec

(π0,1
0)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

plus := rec

(π0,1
0)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1,1)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

plus := rec

(π0,1
0)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1,1)

mult x y := match x with

| 0 => y

| S x ′ => plus y (mult x ′ y)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

plus := rec

(π0,1
0)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1,1)

mult x y := match x with

| 0 => y

| S x ′ => plus y (mult x ′ y)

mult := rec

(comp1,0 O 〈〉 〈〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Example

plus x y := match x with

| 0 => y

| S x ′ => S(plus x ′ y)

plus := rec

(π0,1
0)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1,1)

mult x y := match x with

| 0 => y

| S x ′ => plus y (mult x ′ y)

mult := rec

(comp1,0 O 〈〉 〈〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

A(mult) = (2,0)

A Formalization of Polytime Functions 13/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Properties of B

Theorem (Polymax Bounding)

For all f in B with well-defined arities A(f), there exists a

length-bounding monotone polynomial PolB(f) such that, for all

x and y

|f (x ; y)| ≤ (PolB(f))(|x |) + maxi |yi |

A Formalization of Polytime Functions 14/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Outline

Characterizing polytime functions

Cobham’s class

Bellantoni-Cook’s class

Translations between the two classes

Application to Cryptography

A Formalization of Polytime Functions 15/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Bellantoni’s thesis: C ↔ B

The two classes are equivalents if:

• we can translate every C into B (C ⊂ B)

• we can translate every B into C (B ⊂ C)

Bellantoni and Cook paper proof Bellantoni and Cook shows for

each function in B (resp. C) the existence of a function with the

same semantics in C (resp. B).

Coq proof We write two certified compilers B → C and C → B

A Formalization of Polytime Functions 16/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Compilation: B → C

Difficulty : find the bound j

rec g h0 h1 ⇒ Rec g′ h′
0 h′

1 j

A Formalization of Polytime Functions 17/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Compilation: B → C

Difficulty : find the bound j

rec g h0 h1 ⇒ Rec g′ h′
0 h′

1 j

We need to encode polynomials into Cobham expressions

∀P,

∣
∣
∣Poly→C(x)(P)

∣
∣
∣ = P

(

|x |
)

A Formalization of Polytime Functions 17/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Compilation: B → C

Difficulty : find the bound j

rec g h0 h1 ⇒ Rec g′ h′
0 h′

1 j

We need to encode polynomials into Cobham expressions

∀P,

∣
∣
∣Poly→C(x)(P)

∣
∣
∣ = P

(

|x |
)

j is given by composition of Poly→C and PolB

j = Poly→C
(

PolB(rec g h0 h1) + xn + · · · + xn+s−1

)

A Formalization of Polytime Functions 17/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Compilation: C → B

Difficulty : recursion

Rec g′ h′
0 h′

1 j ⇒ rec g h0 h1

A Formalization of Polytime Functions 18/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Compilation: C → B

Difficulty : recursion

Rec g′ h′
0 h′

1 j ⇒ rec g h0 h1

Simulate the recursion with an artificial argument w

∀f in C, f (~x) = C → B(w ;~x)

if w is big enough

PolC→B(f)(|x |) ≤ |w |

A Formalization of Polytime Functions 18/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Summary of our implementation in Coq
• we have deep embedded the Cobham and

Bellantoni-Cook’s classes and formally proved their
relations.

$ coqwc -e *.v

spec proof comments

2600 6321 1189 total

A Formalization of Polytime Functions 19/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Summary of our implementation in Coq
• we have deep embedded the Cobham and

Bellantoni-Cook’s classes and formally proved their
relations.

$ coqwc -e *.v

spec proof comments

2600 6321 1189 total

• Compared to the paper proof by Bellantoni and Cook, we
have been careful in making our proof fully constructive.

We obtain more precise bounding polynomials and efficient

translations between the two characterizations.

A Formalization of Polytime Functions 19/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Summary of our implementation in Coq
• we have deep embedded the Cobham and

Bellantoni-Cook’s classes and formally proved their
relations.

$ coqwc -e *.v

spec proof comments

2600 6321 1189 total

• Compared to the paper proof by Bellantoni and Cook, we
have been careful in making our proof fully constructive.

We obtain more precise bounding polynomials and efficient

translations between the two characterizations.

• Another difference is that we consider functions on
bitstrings instead of functions on positive integers.

This latter change is motivated by the application of our

formalization in the context of formal security proofs in
cryptography: we want to distinguish, for example, bitstrings

0 and 00.

A Formalization of Polytime Functions 19/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Outline

Characterizing polytime functions

Cobham’s class

Bellantoni-Cook’s class

Translations between the two classes

Application to Cryptography

A Formalization of Polytime Functions 20/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

CertiCrypt

• CertiCrypt is a Coq library for formalizing security proofs in

cryptography by using a probabilistic imperative

programming language.

• A command c is PPT if:

• It terminates;
• • if polynomials (p, q) bound the size and time of the input

• then there exists (F (p), q + G(q)) that bounds size and time

of the output.

• The language of expressions admits user-defined
expressions:

• The user must prove a bound on size.
• The bound on time is axiomatized.

A Formalization of Polytime Functions 21/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Our extension to CertiCrypt

• We add Bellantoni-Cook’s expression to the language.

• The size bound is given by:

F (p) = PolB(e)(p)

It follows immediately from properties of Bellantoni-Cook’s

class.

A Formalization of Polytime Functions 22/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Our extension to CertiCrypt

• We add Bellantoni-Cook’s expression to the language.

• The size bound is given by:

F (p) = PolB(e)(p)

It follows immediately from properties of Bellantoni-Cook’s

class.

• The time bound is given:

G(p) = Poltime(e)(p)

• A Bellantoni-Cook’s expression is guaranteed to be

executable in polynomial time.
• But the precise polynomial depends on the particular

implementation.
• We consider the obvious implementation on a stack

machine to derive Poltime.

A Formalization of Polytime Functions 22/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Conclusion
Contributions

• Formalization of Cobham and Bellantoni-Cook’s Classes

Adaptation and verification in Coq of the Chapter 3 of

Bellantoni’s PhD thesis

• Certified compilers between C → B and B → C

We had to fix a lot of details that were left to the reader in

the paper proof.

• Usability in proof of security in cryptography

By extending CertiCrypt

A Formalization of Polytime Functions 23/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Conclusion
Contributions

• Formalization of Cobham and Bellantoni-Cook’s Classes

Adaptation and verification in Coq of the Chapter 3 of

Bellantoni’s PhD thesis

• Certified compilers between C → B and B → C

We had to fix a lot of details that were left to the reader in

the paper proof.

• Usability in proof of security in cryptography

By extending CertiCrypt

Future Work

• Library of polytime functions

• Formalizing other characterizations of polytime functions

• Dealing with probabilities inside the class

A Formalization of Polytime Functions 23/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Library:

http://staff.aist.go.jp/david.nowak/polytime/

Questions ?

A Formalization of Polytime Functions 24/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Well-formedness of C

f (ǫ, ~x) := g(~x)
f (yi , ~x) := hi(y , f (y , ~x), ~x)

hi takes two more arguments than g.

A Formalization of Polytime Functions 25/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Well-formedness of C

f (ǫ, ~x) := g(~x)
f (yi , ~x) := hi(y , f (y , ~x), ~x)

hi takes two more arguments than g.

Infer Arity of C Expression

A : C → (nat + errori)

A Formalization of Polytime Functions 25/ 25

Introduction Characterizing polytime functions Application to Cryptography Conclusion

Well-formedness of C

f (ǫ, ~x) := g(~x)
f (yi , ~x) := hi(y , f (y , ~x), ~x)

hi takes two more arguments than g.

Infer Arity of C Expression

A : C → (nat + errori)

We must add information to compute the arity.

Πi
n (projection with i < n)

Compn h~l (composition)

A Formalization of Polytime Functions 25/ 25

	Characterizing polytime functions
	Cobham's class
	Bellantoni-Cook's class
	Translations between the two classes

	Application to Cryptography

