
Verified Synthesis of Knowledge-Based Programs
in Finite Synchronous Environments

P. Gammie

School of Computer Science
Australian National University

National ICT Australia (summer job)

Interactive Theorem Proving
Second International Conference

2011

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 1 / 21

Motivation: Knowledge in Distributed Systems

Protocols in distributed systems are often presented informally by
talking about who knows what when:

... When the writer knows (via the acknowledgements and
its knowledge of its own local behaviour) that a majority of the
processes have their tag values equal to t, it returns ack. ...

— Nancy Lynch (1996)

Idea: write specifications using formal knowledge conditionals.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 2 / 21

Stock example: the autonomous robot

. . .

0 1 2 3 4 5 6

goal region

(Kai Engelhardt, tgif on Linux, 2001.)

A robot travels along the natural number line.
It starts at 0 and aims to halt in the goal region {2,3,4}.
The environment tries to move it to the right 0 or 1 positions at
each time step.
The robot has a sensor that reads the current position ± 1.
It can pull the brake instantaneously.

What program should the robot execute?

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 3 / 21

The robot: knowledge-based program (KBP)

do
[] Krobot goal → Halt
[] ¬Krobot goal → Nothing

od

... and a suitable definition of the environment ...

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 4 / 21

Outline

1 Semantics

2 Finite-state implementations of KBPs

3 Formalisation in Isabelle/HOL

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 5 / 21

The Logic of Knowledge

Standard multi-modal account of knowledge using Kripke structures:
propositional
modality Ka for each agent a.
Standard S5n models: one equivalence relation per agent.

Guard syntax
For some sets of propositions P and agents A:

φ ::= P | φ ∧ φ |¬φ |KAφ

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 6 / 21

Semantics
Given a Kripke structure M consisting of:

a set of worldsW
one equivalence relation ∼a ⊆ W ×W per agent a
a valuation function V : P ⇒ 2W

define satisfaction at a world w ∈ W:

M,w |= p iff w ∈ Vp
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= Kaφ iff ∀w ′ ∈ W.w ∼a w ′ −→ M,w ′ |= φ

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 7 / 21

Interpreted systems

The following is a streamlined version of the story told by Fagin,
Halpern, Moses, and Vardi (1995).

A KBP is a set of guarded commands, a subset of φ× aAct .

A finite-state environment consists of:
a finite set of (global, instantaneous) states S
some way of evaluating propositions V : P ⇒ 2S

some set of initial states init : 2S

the environment’s action envAct : S ⇒ 2eAct

a global transition function:

s eAct−−−→
aActs

s′ : eAct ⇒ (A ⇒ aAct)⇒ S ⇒ S

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 8 / 21

Equivalence classes over traces

Assume there is an observation function Oa : S ⇒ O for each agent a.

We hoist these to traces t , t ′ ∈ S list:

The synchronous perfect-recall (SPR) semantics for knowledge

t ∼a t ′ ≡ map Oa t = map Oa t ′

Therefore all agents can tell the time:

Synchrony

t ∼a t ′ =⇒ length t = length t ′

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 9 / 21

Synchrony supports an inductive construction

The set of traces of the system of length n are:

jkbpC0 = init

jkbpCn+1 = {t eAct−−−→
aActs

s | t ∈ jkbpCn

∧ eAct ∈ envAct (last t)
∧ ∀a ∈ A. aActs a ∈ {act | (φ,act) ∈ KBPa ∧ jkbpCn, t |= φ}}

This yields a canonical set:

jkbpC =
⋃
n

jkbpCn

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 10 / 21

Finite-state implementations of KBPs

We really want automata that implement the KBPs, i.e. enable the
same actions in the same knowledge states.
→ As we will see, infinite-state implementations always exist.

It is natural to ask when there are finite-state implementations.
→ van der Meyden (1996) showed that this is only sometimes.

Therefore we only treat special cases, such as:
when there is only a single agent
when agents communicate only by broadcast

→ Details in the paper / AFP.

I refined the existence theorems into an algorithmic story.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 11 / 21

Implementations

A Moore automaton with states of type X consists of:
Initial states: O → X ;
Transitions: O → X → X
Actions: X → aAct list

Canonical infinite-state implementations always exist; for agent a:

States: The partition of jkbpC under ∼a.
Transitions: For X ∈ X , transition on o ∈ O to state

{t s ∈ jkbpC | t ∈ X ∧Oa(s) = o}

Actions: Choose t ∈ X and calculate

{act | (φ,act) ∈ KBPa ∧ jkbpC, t |= φ}

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 12 / 21

Key technical machinery: simulations

van der Meyden showed that if we can simulate the Kripke structure
corresponding to jkbpC by a finite Kripke structure, then we have our
finite-state implementations.

Simulations
A simulation is a map f from the worlds of M to the worlds of M ′ s.t.:

For all propositions p: u ∈ VM p iff f u ∈ VM′ p
If u ∼a v in M then f u ∼a f v in M ′

If f u ∼a v ′ in M ′ then there is a v s.t. f v = v ′ and u ∼a v in M
It follows that M,w |= φ iff M ′, f w |= φ.

There are simulations for the two special cases mentioned earlier.
→ Details in the paper / AFP.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 13 / 21

I showed how an automaton for agent a can be constructed using only
the simulated equivalence classes for a.
→ Details in the paper / AFP.

Key Problem: the action function looks like this:

{act | (φ,act) ∈ KBPa ∧ jkbpC(length t), t |= φ}

How do we compute this? jkbpC(length t) might be huge.

For the simulations we have, the simulated traces contain enough
information already. This is a bit surprising.

The algorithm itself is a depth-first search and is similar to the subset
construction for determinising NDFAs.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 14 / 21

An implementation of the robot

{0} {0,1}0,1,2

0

{2}

3

{0,1,2}1,2

1,2,3

0

1

{3}

4

{2,3}3

{1,2,3}

2

2,3,4
1

4

2,3

0
1 2

{4}5

{3,4}

4

{2,3,4}3

3,4,5

2

5

3,4

1

2

5

4

3

0,1

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 15 / 21

... but this is what a human would have designed:

{0,1}

{0,1,2}

{3,4,5,..}

{2,3,4,5,..}

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 16 / 21

The bigger picture

“Broadcast environments” also go by the name of (the logic of) public
announcements.

However the framework presented here is more expressive: it can
deal with a changing world.

A variant of this semantics has been used to treat KBPs for “snoopy
cache protocols” manually.

This is a multi-agent scenario.
→ So don’t be fooled by the triviality of the robot!

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 17 / 21

Formalisation in Isabelle/HOL

The mechanisation effort proceeded much as I presented it here.

We show once-and-for-all that:
Canonical interpretations (jkbpC) exist
Canonical automata exist

and assuming simulated operations exist:
Simulated automata exist
The generic algorithm produces simulated automata.

Then for each special case we show that the corresponding simulation
and simulated operations do the trick.

Finally we instantiate the entire framework on two examples, and
Isabelle’s code generator produces automata for us.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 18 / 21

Locales for context

Ultimately the algorithm is parametrised by the environment, the KBPs
and the simulated operations.

Isabelle’s locales are a perfect fit for this. For example:

locale Environment =
fixes jkbp :: "’a⇒ (’a, ’p, ’aAct) KBP"

and envInit :: "(’s :: finite) list"
and envAction :: "’s⇒ ’eAct list"
and envTrans :: "’eAct⇒ (’a⇒ ’aAct)⇒ ’s⇒ ’s"
and envVal :: "’s⇒ ’p⇒ bool"
and envObs :: "’a⇒ ’s⇒ ’obs"

assumes subj: "∀a gc. gc ∈ set (jkbp a) −→ subjective a (guard gc)"

This worked quite well, apart from the repetition due to instantiating
types and the code generator.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 19 / 21

Top-down derivations

Showing that an algorithm works “once and for-all” (with all these
parameters) in a classical top-down manner seems to necessitate data
refinement.

What I refined was a matter of necessity; the end product is good
enough for today but maybe not tomorrow.

It also involved some cutting-and-pasting of existing theories such as
the Isabelle Collections Framework of Lammich and Lochbihler (2010).

Isabelle’s simplifier is much less useful than usual as it struggles with
“abstract” quotients. In contrast the recent work of Kaliszyk and Urban
(2011) deals with “concrete” quotients.

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 20 / 21

Thanks!

P. Gammie (Australian National University) Synthesis of KBPs ITP 2011 21 / 21

	Semantics
	Finite-state implementations of KBPs
	Formalisation in Isabelle/HOL

