Relational decomposition

Lennart Beringer
Department of Computer Science
Princeton University

ITP 2011, August 22-26, Nijmegen

Partially funded by AFOSR FA9550-09-1-0138 and NSF CNS-0910448

Program certification stacks: (F)PCC, VST,...

- Formal embedding in theorem prover (Isabelle/HOL, Coq,...)
- interactive/automated discharging of VCGens
- construction of semantic model / soundness proof
- exploit expressivity of meta-logic in interpretation of assertions
- use program extraction, reflective inference, proof checking ...

Aim: reuse of formalisms

- amortize the formalization effort and TCB infrastructure
(Rel.) completeness: "sanity check" for given proof rules
- specific to format \& interpretation of assertions \& judgements
- typically, interpretation concerns single program execution
\square
- extensional interpretations of program analyses: liveness, def-use chains, (in-)dependencies, slicing.
- security: noninterference, fault-tolerance
- program equivalences (correctness of compiler transformations and translations, bisimulations)
- PL theory: polymorphism/parametricity, types \& effects.

Aim: reuse of formalisms

- amortize the formalization effort and TCB infrastructure
(Rel.) completeness: "sanity check" for given proof rules
- specific to format \& interpretation of assertions \& judgements
- typically, interpretation concerns single program execution

Observation: many program properties are relational

- extensional interpretations of program analyses: liveness, def-use chains, (in-)dependencies, slicing. . .
- security: noninterference, fault-tolerance
- program equivalences (correctness of compiler transformations and translations, bisimulations)
- PL theory: polymorphism/parametricity, types \& effects...

Reasoning about two-execution properties

- Syntactic approaches (CFG, program points, paths): translation validation, Voronkov ${ }^{+}, \ldots$
- Relational program logics (Benton, Yang, Amtoft ${ }^{+}$)
- judgements over pairs of program phrases
- pre-/postconditions are state relations
- Self-composition (Barthe ${ }^{+}$, Joshi ${ }^{+}$, Darvas ${ }^{+}$, Beringer ${ }^{+}$)
- reduce two-execution property to some one-execution property of a different program (syntactic translation)
- then use existing unary verification calculi

Example: c noninterferent iff $\left\{\overline{l_{i}=l_{i}^{\prime}}\right\} c ; c^{\prime}\left\{\overline{l_{i}=l_{i}^{\prime}}\right\}$

- algorithmic improvements: Terauchi ${ }^{+}$

Contribution

Relational decomposition

- technique for deriving relational (2-execution) program logics from unary logics (Hoare, VDM, wp)
- provides a compositional analysis of self-composition at level of program logics
- applicable across different languages / op. semantics / states

Rest of talk:
(1) Formal definitions \& abstract results
(2) Instantiation: compositional derivation of RHL

- termination-insensitive interpretation
- novel rules for dissonant loops

Formalization in Isabelle/HOL

Formal setup: transition systems, simulations

 Starting point: unary program logics $\triangleright C: A$- Big-step operational semantics (LTS): $\mathcal{T} \subseteq \mathcal{S} \times \mathcal{P} \times \mathcal{S}$
- Curried unary assertions $A \in \mathcal{S} \Rightarrow \mathcal{S} \Rightarrow \mathbb{T}$

Partial-correctness judgement $\models^{\mathcal{T}} C: A$ If $(\sigma, C, \tau) \in \mathcal{T}$ then $A \sigma \tau$.

Relational simulation: pairs of LTS's, relational assertions R, S :

Term.-insensitive simulation $\models_{\mathcal{T}}^{\mathcal{T}^{\prime}} C \sim C^{\prime}: R \Rightarrow S$ If $(\sigma, C, \tau) \in \mathcal{T}$ and $\left(\sigma^{\prime}, C^{\prime}, \tau^{\prime}\right) \in \mathcal{T}^{\prime}$ and $\sigma R \sigma^{\prime}$ then $\tau S \tau^{\prime}$.

Research task

Characterize relational simulation without direct reference to operational semantics, just with respect to one-execution logic.

Relational decomposition

Given relation $\phi \subseteq \mathcal{S} \times \mathcal{S}^{\prime}$, define the operators $D e c_{\mathrm{L}}$ and $D e c_{\mathrm{R}}$

$$
\begin{gathered}
D e c_{\mathrm{L}} R \phi \sigma \tau=\forall \sigma^{\prime} \cdot \sigma R \sigma^{\prime} \rightarrow \tau \phi \sigma^{\prime} \\
\sigma \frac{\mathrm{R}}{\mathrm{~S}} \mathrm{~S}^{\prime} \\
\operatorname{Dec}_{\mathrm{R}} S \phi \sigma^{\prime} \tau^{\prime}=\forall \tau . \tau \phi \sigma^{\prime} \rightarrow \tau S \tau^{\prime}
\end{gathered}
$$

The operators yield unary specifications for the one-executions:

- $D e c_{\mathrm{L}}: \phi$ is postcondition for R along C, for fixed primed state
- $D e c_{\mathrm{R}}: \phi$ is precondition for S along C^{\prime} for fixed nonprimed state

Relational decomposition: soundness

Soundness

Suppose $\models^{\tau} C: \operatorname{Dec} R \phi$ and $\models^{\tau^{\prime}} C^{\prime}: \operatorname{Dec}_{\mathrm{R}} S \phi$. Then $\vDash C \sim C^{\prime}: R \Rightarrow S$.

How to obtain diagonal relations ϕ ?

- Constructively: construct ϕ once and for all in derivation of proof rules for relational logics, compositionally along phrase structures
- Conceptually: existence of extremal witnesses (completeness)

Extremal witnesses, completeness

Strongest postcondition of R along C is min. witness $\phi_{\mathrm{L}}^{\mathcal{T}} C R$:

- Satisfies $\phi_{\mathrm{L}}^{\mathcal{T}} C R \subseteq \phi$ whenever $\models^{\mathcal{T}} C: D e c_{\mathrm{L}} R \phi$ Weakest lib. precondition of S along C^{\prime} is max. witness $\phi_{\mathrm{R}}^{\tau^{\prime}} C^{\prime} S$:
- Satisfies $\phi \subseteq \phi_{\mathrm{R}}^{\tau^{\prime}} C^{\prime} S$ whenever $\models^{\tau^{\prime}} C^{\prime}: \operatorname{Dec}_{\mathrm{R}} S \phi$ Thus, any witness ϕ satisfies $\phi_{\mathrm{L}}^{\mathcal{T}} C R \subseteq \phi \subseteq \phi_{\mathrm{R}}^{\mathcal{T}^{\prime}} C^{\prime} S$.

Completeness

Let $\vDash C \sim C^{\prime}: R \Rightarrow S$. Any relation $\phi_{\mathrm{L}}^{\mathcal{T}} C R \subseteq \phi \subseteq \phi_{\mathrm{R}}^{\mathcal{T}^{\prime}} C^{\prime} S$ satisfies $\models^{\mathcal{T}} C: D e c_{\mathrm{L}} R \phi$ and $\models^{\mathcal{T}^{\prime}} C^{\prime}: D e c_{\mathrm{R}} S \phi$.

Corollary: witness-free characterization
$\vDash C \sim C^{\prime}: R \Rightarrow S$ is equivalent to $\phi_{\mathrm{L}}^{\mathcal{T}} C R \subseteq \phi_{\mathrm{R}}^{\tau^{\prime}} C^{\prime} S$.

Instantiation: IMP + simple objects

Benton/Yang-style relational logic $\vdash C \sim C^{\prime}: R \Rightarrow S$, but

- termination-insensitive interpretation
- justification of rules exhibits witnesses ϕ
- formally: define judgement form $\vdash C \sim C^{\prime}: R \Rightarrow S$ as

$$
\exists \phi . \triangleright C: D e c_{\mathrm{L}} R \phi \wedge \triangleright C^{\prime}: D e c_{\mathrm{R}} S \phi
$$

and derive proof rules

- minor differences due to termination, PER-ness
- perfect decomposition w.r.t L / R

Derived RHL: Assign-Assign

$$
\text { R-AssAss } \overline{\vdash x:=e \sim x^{\prime}:=e^{\prime}: S\left[e / x, e^{\prime} / x^{\prime}\right] \Rightarrow S}
$$

$$
\begin{aligned}
& \phi=\left\{\left(\tau, \sigma^{\prime}\right) . \tau \mathbf{S}\left(\sigma^{\prime}\left[\mathbf{x}^{\prime}:=\mathbf{e}^{\prime}\left(\sigma^{\prime}\right)\right]\right)\right\}
\end{aligned}
$$

Nonatomic statements \& transformation rules : synthesize witnesses for concluding judgement from witnesses of hypothetical judgements

Consonant loops \vdash While b do $C \sim$ While b^{\prime} do $C^{\prime}: R \Rightarrow S$

 Benton-Yang: iterations must proceed in lock-step

Dissonant loops \vdash While b do $C \sim$ While b^{\prime} do $C^{\prime}: R \Rightarrow S$

 New rule: split R into homogeneous U and inhomogeneous V, W

Discussion

Additional material:

- In paper:
- new loop rule in action
- parametrized relational decomposition (aux. state)
- more details on assertion/predicate transformers
- In formalization:
- RD for logics with fault states
- derivation of unary and relational separation logics

Future work:

- instantiation for unstructured code, compiler correctness
- algorithmic reformulation (Terauchi-Aiken), product programs (Barthe-Crespo-Kunz)
- point-free formulation
- termination-sensitive relational decomposition
- scale up to non-toy languages
- HW equivalence checking?

