
Relational decomposition

Lennart Beringer

Department of Computer Science
Princeton University

ITP 2011, August 22-26, Nijmegen

Partially funded by AFOSR FA9550-09-1-0138 and NSF CNS-0910448

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 1 / 15

Program certification stacks: (F)PCC, VST,. . .

analyses

Static

Program

logics

partial correctness

program logic

total correctness

program logic infinite computations

logic with invariants for

Instrumented op. semantics

Native operational semantics

Instrumented op. semantics

Type systemSymb. executionAbstract interpretation

+ compiler, "policies" etc

models

Operational

.....

Formal embedding in theorem prover (Isabelle/HOL, Coq,. . .)
I interactive/automated discharging of VCGens
I construction of semantic model / soundness proof
I exploit expressivity of meta-logic in interpretation of assertions
I use program extraction, reflective inference, proof checking . . .

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 2 / 15

Aim: reuse of formalisms

amortize the formalization effort and TCB infrastructure

(Rel.) completeness: “sanity check” for given proof rules

specific to format & interpretation of assertions & judgements

typically, interpretation concerns single program execution

Observation: many program properties are relational
extensional interpretations of program analyses: liveness, def-use
chains, (in-)dependencies, slicing. . .

security: noninterference, fault-tolerance

program equivalences (correctness of compiler transformations
and translations, bisimulations)

PL theory: polymorphism/parametricity, types & effects. . .

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 3 / 15

Aim: reuse of formalisms

amortize the formalization effort and TCB infrastructure

(Rel.) completeness: “sanity check” for given proof rules

specific to format & interpretation of assertions & judgements

typically, interpretation concerns single program execution

Observation: many program properties are relational
extensional interpretations of program analyses: liveness, def-use
chains, (in-)dependencies, slicing. . .

security: noninterference, fault-tolerance

program equivalences (correctness of compiler transformations
and translations, bisimulations)

PL theory: polymorphism/parametricity, types & effects. . .

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 3 / 15

Reasoning about two-execution properties

Syntactic approaches (CFG, program points, paths): translation
validation, Voronkov+,. . .

Relational program logics (Benton, Yang, Amtoft+)
I judgements over pairs of program phrases
I pre-/postconditions are state relations

Self-composition (Barthe+, Joshi+, Darvas+, Beringer+)
I reduce two-execution property to some one-execution property

of a different program (syntactic translation)
I then use existing unary verification calculi

Example: c noninterferent iff {li = l′i}c; c′{li = l′i}
I algorithmic improvements: Terauchi+

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 4 / 15

Contribution

Relational decomposition

technique for deriving relational (2-execution) program logics
from unary logics (Hoare, VDM, wp)

provides a compositional analysis of self-composition at level of
program logics

applicable across different languages / op. semantics / states

Rest of talk:

1 Formal definitions & abstract results
2 Instantiation: compositional derivation of RHL

I termination-insensitive interpretation
I novel rules for dissonant loops

Formalization in Isabelle/HOL

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 5 / 15

Formal setup: transition systems, simulations
Starting point: unary program logics B C : A

Big-step operational semantics (LTS): T ⊆ S × P × S
Curried unary assertions A ∈ S ⇒ S ⇒ T

Partial-correctness judgement |=T C : A

If (σ,C, τ) ∈ T then A σ τ .

Relational simulation: pairs of LTS’s, relational assertions R, S:

S

R

C

σ

τ

σ ’

τ’

C’

Term.-insensitive simulation |=T ′

T C ∼ C ′ : R⇒ S

If (σ,C, τ) ∈ T and (σ′, C ′, τ ′) ∈ T ′ and σRσ′ then τSτ ′.

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 6 / 15

Research task

Characterize relational simulation without direct reference to
operational semantics, just with respect to one-execution logic.

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 7 / 15

Relational decomposition
Given relation φ ⊆ S × S ′, define the operators DecL and DecR

DecL R φ σ τ = ∀σ′. σRσ′ → τφσ′

σ R

C’

τ

σ

τ

’

φ

S

C

’

DecR S φ σ′ τ ′ = ∀τ. τφσ′ → τSτ ′

The operators yield unary specifications for the one-executions:

DecL: φ is postcondition for R along C, for fixed primed state

DecR: φ is precondition for S along C ′ for fixed nonprimed state
Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 8 / 15

Relational decomposition: soundness

Soundness

Suppose |=T C : DecL R φ and |=T ′
C ′ : DecR S φ. Then

|= C ∼ C ′ : R⇒ S.

How to obtain diagonal relations φ?

Constructively: construct φ once and for all in derivation of proof
rules for relational logics, compositionally along phrase structures

Conceptually: existence of extremal witnesses (completeness)

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 9 / 15

Extremal witnesses, completeness

Strongest postcondition of R along C is min. witness φTL C R:

Satisfies φTL C R ⊆ φ whenever |=T C : DecL R φ

Weakest lib. precondition of S along C ′ is max. witness φT
′

R C ′ S:

Satisfies φ ⊆ φT
′

R C ′ S whenever |=T ′
C ′ : DecR S φ

Thus, any witness φ satisfies φTL C R ⊆ φ ⊆ φT
′

R C ′ S.

Completeness

Let |= C ∼ C ′ : R⇒ S. Any relation φTL C R ⊆ φ ⊆ φT
′

R C ′ S
satisfies |=T C : DecL R φ and |=T ′

C ′ : DecR S φ.

Corollary: witness-free characterization

|= C ∼ C ′ : R⇒ S is equivalent to φTL C R ⊆ φT
′

R C ′ S.

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 10 / 15

Instantiation: IMP + simple objects

Benton/Yang-style relational logic ` C ∼ C ′ : R⇒ S, but

termination-insensitive interpretation

justification of rules exhibits witnesses φ

formally: define judgement form ` C ∼ C ′ : R⇒ S as

∃ φ. B C : DecL R φ ∧B C ′ : DecR S φ

and derive proof rules
I minor differences due to termination, PER-ness
I perfect decomposition w.r.t L/R

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 11 / 15

Derived RHL: Assign-Assign

R-AssAss
` x:=e ∼ x′:=e′ : S[e/x, e′/x′]⇒ S

R

(σ) σ’

’σσ

x:=e x’:=e’φ

S
τ τ σ= ’[x’ := e’(’)][x := e] =σ

φ = {(τ, σ′). τS(σ′[x′ := e′(σ′)])}

Nonatomic statements & transformation rules : synthesize witnesses
for concluding judgement from witnesses of hypothetical judgements

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 12 / 15

Consonant loops `While b do C ∼While b′ do C ′ : R⇒ S

Benton-Yang: iterations must proceed in lock-step

C

R&b

C’

R&b

C’C

R&b

R&b

C C’

S

φ

φ

φ

φ
cons

while

0σ 0’σ

σn nσ ’

σ2 2’σ

1σ 1’σ

. . .

. . .

S = R & ~b

R = T & b=b’

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 13 / 15

Dissonant loops `While b do C ∼While b′ do C ′ : R⇒ S

New rule: split R into homogeneous U and inhomogeneous V,W

C C’

C

C’skip

skip

. . .

. . .

0σ 0’σ

1σ 1’σ

σ2 2’σ

σn nσ ’

φ3

φ2

φ1

φ
diss
while

U

V

U

W

S

 W R & b’

 V R & b

 R U V W S

U = R & b & b’

S = R & ~b & ~b’

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 14 / 15

Discussion
Additional material:

In paper:
I new loop rule in action
I parametrized relational decomposition (aux. state)
I more details on assertion/predicate transformers

In formalization:
I RD for logics with fault states
I derivation of unary and relational separation logics

Future work:

instantiation for unstructured code, compiler correctness
algorithmic reformulation (Terauchi-Aiken), product programs
(Barthe-Crespo-Kunz)
point-free formulation
termination-sensitive relational decomposition
scale up to non-toy languages
HW equivalence checking?

Lennart Beringer (PU) Relational decomposition ITP 2011, Nijmegen 15 / 15

	Decomposition of O

