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Program certification stacks: (F)PCC, VST,. . .
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Formal embedding in theorem prover (Isabelle/HOL, Coq,. . . )
I interactive/automated discharging of VCGens
I construction of semantic model / soundness proof
I exploit expressivity of meta-logic in interpretation of assertions
I use program extraction, reflective inference, proof checking . . .
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Aim: reuse of formalisms

amortize the formalization effort and TCB infrastructure

(Rel.) completeness: “sanity check” for given proof rules

specific to format & interpretation of assertions & judgements

typically, interpretation concerns single program execution

Observation: many program properties are relational
extensional interpretations of program analyses: liveness, def-use
chains, (in-)dependencies, slicing. . .

security: noninterference, fault-tolerance

program equivalences (correctness of compiler transformations
and translations, bisimulations)

PL theory: polymorphism/parametricity, types & effects. . .
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Reasoning about two-execution properties

Syntactic approaches (CFG, program points, paths): translation
validation, Voronkov+,. . .

Relational program logics (Benton, Yang, Amtoft+)
I judgements over pairs of program phrases
I pre-/postconditions are state relations

Self-composition (Barthe+, Joshi+, Darvas+, Beringer+)
I reduce two-execution property to some one-execution property

of a different program (syntactic translation)
I then use existing unary verification calculi

Example: c noninterferent iff {li = l′i}c; c′{li = l′i}
I algorithmic improvements: Terauchi+
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Contribution

Relational decomposition

technique for deriving relational (2-execution) program logics
from unary logics (Hoare, VDM, wp)

provides a compositional analysis of self-composition at level of
program logics

applicable across different languages / op. semantics / states

Rest of talk:

1 Formal definitions & abstract results
2 Instantiation: compositional derivation of RHL

I termination-insensitive interpretation
I novel rules for dissonant loops

Formalization in Isabelle/HOL
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Formal setup: transition systems, simulations
Starting point: unary program logics B C : A

Big-step operational semantics (LTS): T ⊆ S × P × S
Curried unary assertions A ∈ S ⇒ S ⇒ T

Partial-correctness judgement |=T C : A

If (σ,C, τ) ∈ T then A σ τ .

Relational simulation: pairs of LTS’s, relational assertions R, S:

S

R

C

σ

τ

σ ’

τ’

C’

Term.-insensitive simulation |=T ′

T C ∼ C ′ : R⇒ S

If (σ,C, τ) ∈ T and (σ′, C ′, τ ′) ∈ T ′ and σRσ′ then τSτ ′.
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Research task

Characterize relational simulation without direct reference to
operational semantics, just with respect to one-execution logic.
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Relational decomposition
Given relation φ ⊆ S × S ′, define the operators DecL and DecR

DecL R φ σ τ = ∀σ′. σRσ′ → τφσ′

σ R

C’

τ

σ

τ

’

φ

S

C

’

DecR S φ σ′ τ ′ = ∀τ. τφσ′ → τSτ ′

The operators yield unary specifications for the one-executions:

DecL: φ is postcondition for R along C, for fixed primed state

DecR: φ is precondition for S along C ′ for fixed nonprimed state
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Relational decomposition: soundness

Soundness

Suppose |=T C : DecL R φ and |=T ′
C ′ : DecR S φ. Then

|= C ∼ C ′ : R⇒ S.

How to obtain diagonal relations φ?

Constructively: construct φ once and for all in derivation of proof
rules for relational logics, compositionally along phrase structures

Conceptually: existence of extremal witnesses (completeness)
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Extremal witnesses, completeness

Strongest postcondition of R along C is min. witness φTL C R:

Satisfies φTL C R ⊆ φ whenever |=T C : DecL R φ

Weakest lib. precondition of S along C ′ is max. witness φT
′

R C ′ S:

Satisfies φ ⊆ φT
′

R C ′ S whenever |=T ′
C ′ : DecR S φ

Thus, any witness φ satisfies φTL C R ⊆ φ ⊆ φT
′

R C ′ S.

Completeness

Let |= C ∼ C ′ : R⇒ S. Any relation φTL C R ⊆ φ ⊆ φT
′

R C ′ S
satisfies |=T C : DecL R φ and |=T ′

C ′ : DecR S φ.

Corollary: witness-free characterization

|= C ∼ C ′ : R⇒ S is equivalent to φTL C R ⊆ φT
′

R C ′ S.
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Instantiation: IMP + simple objects

Benton/Yang-style relational logic ` C ∼ C ′ : R⇒ S, but

termination-insensitive interpretation

justification of rules exhibits witnesses φ

formally: define judgement form ` C ∼ C ′ : R⇒ S as

∃ φ. B C : DecL R φ ∧B C ′ : DecR S φ

and derive proof rules
I minor differences due to termination, PER-ness
I perfect decomposition w.r.t L/R
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Derived RHL: Assign-Assign

R-AssAss
` x:=e ∼ x′:=e′ : S[e/x, e′/x′]⇒ S

R

(σ) σ’

’σσ

x:=e x’:=e’φ

S
τ τ σ=    ’[x’ := e’(   ’)][x := e     ] =σ

φ = {(τ, σ′). τS(σ′[x′ := e′(σ′)])}

Nonatomic statements & transformation rules : synthesize witnesses
for concluding judgement from witnesses of hypothetical judgements
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Consonant loops `While b do C ∼While b′ do C ′ : R⇒ S

Benton-Yang: iterations must proceed in lock-step

C

R&b

C’
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. . .

. . .

S = R & ~b

R = T & b=b’
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Dissonant loops `While b do C ∼While b′ do C ′ : R⇒ S

New rule: split R into homogeneous U and inhomogeneous V,W

C C’

C

C’skip

skip

. . .

. . .

0σ 0’σ

1σ 1’σ

σ2 2’σ

σn nσ ’

φ3

φ2

φ1

φ
diss
while

U

V

U

W

S

 W     R & b’

 V     R & b 

 R     U     V    W     S

U = R & b & b’

S = R & ~b & ~b’
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Discussion
Additional material:

In paper:
I new loop rule in action
I parametrized relational decomposition (aux. state)
I more details on assertion/predicate transformers

In formalization:
I RD for logics with fault states
I derivation of unary and relational separation logics

Future work:

instantiation for unstructured code, compiler correctness
algorithmic reformulation (Terauchi-Aiken), product programs
(Barthe-Crespo-Kunz)
point-free formulation
termination-sensitive relational decomposition
scale up to non-toy languages
HW equivalence checking?
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