
LCF-Style Bit-blasting in HOL4
Anthony Fox

University of Cambridge

Fixed width bit-vectors

• A wide range of bit-vector problems arise when verifying
hardware and software.

• There are many useful bit-vector operations, including:

•Machine arithmetic and orderings (signed and unsigned).

• Bitwise logic.

• Concatenation, extraction, repetition, shifts, rotations,
extensions, conversions…

Bit-vectors in HOL4

•Wai Wong developed a theory of words in the 1990s. Based
on lists, with predicates used to constrain word lengths.

• Early in 2002 a theory of 32-bit words was added to HOL.
This was based on a quotient type construction.

• Later in 2002 this was generalised with an ML functor, which
built a theory for any word length.

• In 2005 the current theory replaced these old developments.
It uses parametric polymorphism (an idea by John Harrison).

Deciding bit-vector problems in HOL4

• This has evolved over time:

• Started with very little support – a collection of theorems/
rewrites. (Proofs were often tedious and painful.)

• Then more powerful simplification based tools were
developed. (Some proofs were now trivial, but some still
hard work.)

• This rough diamonds paper shows how things have
improved with the development of a bit-blasting based
decision procedure.

Deciding bit-vector problems

• I received e-mails of the form: How do I solve this apparently
simple 32-bit problem?

The current simplifications don’t seem to simplify this goal?

• In this case we could add more (domain specific) simplification
rules…

• However, combinations of arithmetic and bitwise operations
can be problematic. Something more general would be nice.

Bit-blasting
• Bit-blasting is a more general approach for solving bit-vector

problems.

• The basic idea is to convert a finite bit-vector problem into a
propositional formula. Then call a SAT solver.

• This is trivial for bitwise operations. For example, to solve

one simply needs to show

where i ranges over bit positions.

Bit-blasting

• Linear arithmetic can be covered by considering ripple carry
addition.

• Propositions can become very large but fortunately Hasan
Amjad’s HolSat development works well here. (MiniSat is
used as an efficient external SAT solver, with proofs
reconstructed in HOL.)

• Still important to efficiently generate propositions from bit-
vector goals.

• Some goals can be discharged during an initial simplification
stage, avoiding the need for bit-blasting.

Performance and Limitations
• In practice, the tool has reasonable performance. For

example, our 32-bit goal

is solved in 0.15s. With 128-bit words this takes 1.8s.

•Obviously this brute force approach does suffer with certain
goals (those generating very large propositions).

• Bit-blasting non-linear arithmetic is not supported (except
multiplication for very small word sizes). Also bit extraction
with variable bounds.

SMT?
• SMT provers, such as Z3, are very capable with respect to bit-

vector problems. Tjark Weber has implemented proof
reconstruction for SMT in HOL4.

• So why not rely on SMT alone?
★ SMT solvers are not distributed with HOL and it can be a hassle installing

them. (Z3 is developed for Windows.)

★ Z3 is closed source and is being constantly developed. It’s a real effort to
maintain proof reconstruction tools.

★ At the moment many bit-vector proofs cannot be re-constructed due
to insufficient details, or syntax errors, in Z3’s proof output.

★ HOL’s LCF approach offers a very high level of assurance, which is lost
when proofs are not re-constructed (i.e. in Oracle mode). The
approach is then vulnerable to bugs in Z3 or in the translation process.

Summary
• The new tool is already in use, offers good coverage, is fully

automatic and in many cases has reasonable performance.

• It provides counterexamples, which can be very instructive.

• The current approach is very simple.

•More advances techniques could be employed to cope with
hard problems, e.g. heuristics, abstractions (laziness), more
simplification, …

• It may be beneficial to produce a standalone tool, adopting an
integration approach similar to that of Metis.

• It is likely that any future improvements would be application/
demand driven.

Questions?

